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THE NORMAL (CLASSICAL) ZEEMAN EFFECT 

INTRODUCTION 
Spectroscopy was a well-established discipline by the latter half of the 19th century. Investigators 
had cataloged the visible-light spectra of many elements and compounds, both from laboratory 
experiments and from the observation of spectra from the sun and other astronomical bodies.1 
An emission spectrum of hot neon gas, for example, is shown in Figure 1. 

 
Figure 1: A portion of the visible-light emission spectrum of neutral neon gas, which you will use 
for this experiment (wavelengths are in angstroms). This plot is similar to how the neon spectrum 
might appear through a low-resolution, prism spectroscope. It was generated from NIST atomic 
line data available at http://www.nist.gov/pml/data/asd.cfm. 

Although it was assumed by many physicists that such spectra must originate from the 
oscillatory motion of electric charge within the atoms or molecules of a material, even a 
rudimentary theory of the fundamental processes within atoms by which light may be generated 
or absorbed was yet to be developed. During 1896–1897 Pieter Zeeman, the outstanding Dutch 
experimental physicist, observed the splitting of the spectral lines of both sodium and cadmium 
atoms in the presence of a strong magnetic field.2 Efforts by Zeeman and his colleague, the 
eminent theoretical physicist Hendrik Lorentz, determined that this splitting could be explained 
by oscillations of the electron—the first-to-be-identified elementary particle, newly-discovered 
by J. J. Thompson in 1897.3 This identification of atomic spectral lines with oscillations of 
electrons within atoms earned Zeeman and Lorentz the 1902 Nobel Prize in physics (only the 
second time the Nobel had been awarded); J. J. Thompson in turn won the 1906 prize for his 
work. 
                                                 
1 For instance, spectral lines of helium were first discovered in the solar spectrum by the French astronomer Jules 
Janssen during a total solar eclipse in 1868. Helium was not identified from an earthly source until 1895 by Swedish 
chemists Cleve and Langlet. 
2 Pieter Zeeman had just been awarded his Ph.D. in 1893 at Leyden University. To make his seminal observations, 
he used a Tesla-level field and an original, 10 foot radius Rowland diffraction grating with approximately 590 
lines/mm. He was evidently inspired by an unsuccessful experimental attempt by Michael Faraday (Kox, 1997). 
3 Electrons were identified by investigating cathode rays, first observed variously by J. Hittorf, E. Goldstein, W. 
Crookes, and A. Schuster during the period 1869–1890. In 1896 J. J. Thompson definitively identified these “rays” 
as consisting of identical, previously unidentified, negatively-charged particles with a charge/mass ratio over 1800 
times larger than that of a positively-charged Hydrogen ion (a proton, as we now know it). His 1897 paper 
established him as the “discoverer” of the electron, whose name was actually coined by G. Stoney in 1891 as the 
“fundamental unit quantity of electricity.” 

http://www.nist.gov/pml/data/asd.cfm
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In this experiment you will examine the effects of a magnetic field on the wavelengths of the 
spectral lines of neon. By familiarizing yourself with Lorentz’s simple and elegant but powerful 
argument, you can predict the polarizations of the emitted spectral lines and use the observed 
splitting of the lines to determine an accurate estimate of the electron’s charge/mass ratio, 

.e e eq m e m= − 4 However, you will discover that Lorentz’s theory describes the behaviors of 
only a tiny fraction of the spectral lines you observe, implying that the dynamics of the electrons 
within an atom require additional physics unknown to Lorentz (or, indeed, that are explainable 
by any classical theory of charged particle interactions with an electromagnetic field). 

THEORY 
Generation of light by charged particle motion 

Before proceeding with our derivation of Lorentz’s classical theory of the Zeeman Effect, we 
must briefly review (or introduce) how electromagnetic radiation may be generated by the 
classical motion of charged particles such as an electron.5 Assume we sit at the origin of our 
coordinate system, and we ask what would be the electric field ( )E t



 and magnetic field ( )B t


 
produced here (position )= 0  by a charge q following a path ( )r t  through space. Feynman’s 
equations (28.3) and (28.4) give our equations (27.1) and (27.2): 
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where the retarded time rett  refers to the time at which light (electromagnetic radiation) would 
have had to leave the source charge q in time to arrive at our position (the origin) at time t, that is 

,rett t r c= −  where r was the distance of the charge when the light would have been emitted: 
( ).retr r t=  The unit vector ˆ( )rettr  points in the direction of the charge at that earlier time, i.e. the 

apparent direction to the charge at our time t. Note that all of the positions referred to in (27.1) 
and (27.2) must be evaluated at the retarded time .rett  As explained in Feynman, the first two 
terms in the equation for ( )E t



 simply represent the “effective” inverse square law Coulomb field 
produced at the observer’s position by the moving charge, and thus do not really contribute to the 
production of electromagnetic radiation by the charge; it is the third and final term in (27.1) 
which interests us. 

Assume that the charge q is constrained to orbit about some fixed point R by a “Hook’s law” 
force 2

0 ,F m xω= −


  where m is the particle’s mass and x  is its position relative to its equilibrium 
                                                 
4 We take e to be the absolute value of the electron’s charge, so .eq e= −   
5 As with most of the ideas introduced in this course, Feynman explains it very clearly and elegantly. See his 
Lectures on Physics, Volume I chapter 28 (Feynman, Leighton, & Sands, 1964, 2006). Our presentation follows his 
(we refer to this text as Feynman). 
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position R. The motion of the charge about R would then be simple-harmonic with angular 
frequency 0 ,ω  its path describing some ellipse centered on R. If the maximum amplitude of the 
charge’s motion away from R is very small compared to the distance of R away from the origin 
(our point of observation), then the tip of the unit vector r̂  toward the charge will in turn sweep 
out a very small ellipse in a plane perpendicular to the line of sight from the origin toward R. In 
addition, to a very good approximation the retarded time will be given by ,rett t R c= −  where R 
is the fixed distance to the motion’s center R. Thus the tip of the unit vector ˆ ˆ( ) ( )rett t R c= −r r  
will also undergo simple-harmonic motion at the same frequency 0 ,ω  describing an ellipse about 
the line of sight toward R. The shape of the ellipse r̂  traces will be the projection of the charge’s 
orbital ellipse onto a plane perpendicular to the line of sight toward R (see Figure 2). 

 
Figure 2: Simple-harmonic motion of a charge q about its equilibrium position R follows an 
elliptical path in some plane. The projection of this orbit onto a transverse plane as seen by an 
observer at 0 also traces out an elliptical path, which is the path followed by the tip of the unit 
vector r̂  as it traces out the apparent direction toward the charge q. Clearly, the period of q’s 
orbit around R is the same as that of the tip of r̂  around the line of sight toward R. 

Orienting the z-axis along the line of sight toward R and the x and y axes along the major and 
minor axes of the ellipse traced out by the tip of ˆ,r  and with a suitable choice for 0,t =  the 
motion of r̂  becomes 

 0 0ˆ ˆ ˆˆ( ) cos sint z x a t y b tω ω= + +r   (27.3) 

where a and b are each 1,  and they are each 1R−∝  as the distance R between the observer and  
R varies. Using the third term only of  (27.1), 
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Thus in general the electric field ( )E t


 at the observer’s location traces out an elliptical path in a 
plane transverse to the line of sight toward the charge, and its amplitude varies as 1.R−  This 
oscillation corresponds, naturally, to elliptically-polarized light with angular frequency 0ω  
propagating away from the charge toward the observer. The polarization of the light and its 
amplitude are determined by the apparent transverse motion of the charge as seen by the 
observer. The intensity of the light goes as 2 2 2 2 ,E a b R−∝ + ∝  so each component of the 

R

0

q
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polarization contributes independently to the light’s intensity, and the intensity follows an 
inverse-square law. Light generated in this manner from an oscillating charge is generally 
referred to as electric dipole radiation. If one of the amplitudes a or b vanishes (so that the 
apparent transverse motion of the charge is along a straight line) then the resulting polarization is 
linear. If both a and b vanish (the apparent motion of the charge is directly along the observer’s 
line of sight), then no electromagnetic radiation is generated in the direction toward the observer. 
Note that this has been a classical derivation based on a charge following a continuous, well-
defined path and using Maxwell’s equations. 

An isotropic, hot gas and unpolarized light emission 
The emission spectrum of a monatomic gas such as neon consists of a set of very narrow spectral 
lines with well-defined wavelengths (the line widths are greatly exaggerated in Figure 1). 
Typically, an atomic spectral line width is 610−~  to 710−  of the line’s wavelength. Additionally, 
the charge motion which generates a particular line must be very accurately simple-harmonic, 
because no overtones (additional lines at multiples of the fundamental frequency) are observed in 
a typical atomic spectrum.6 These facts imply that the emission of a particular spectral line 
wavelength from a particular atom will result in a long wave-train with a well-defined frequency 
and polarization as seen by an observer (typically ~ 810− sec duration with oscillations at several 

1410× Hz). The polarization will depend on the relative orientation of the atomic charge 
oscillation to the direction toward the observer, as explained in the previous section (Figure 2).  

A hot gas of a macroscopic number of atoms, if no external forces are applied, will be on average 
completely homogeneous and isotropic as the individual atoms fly about randomly with thermal 
velocities, frequently colliding with each other and with the walls of their container (of course, at 
any instant there will be slight, constantly changing inhomogeneities and anisotropies in the 
neighborhood of any particular atom). This implies that the orientations of the simple-harmonic 
orbits of the charges in the various atoms associated with the emission of a particular spectral 
line will be distributed completely randomly and uniformly in angle and possibly elongation 
(ellipticity). For a particular observer, the polarization of the spectral line’s radiation from any 
particular atom will be randomly determined but well-defined, whereas the next atom to emit 
will have a completely unrelated polarization. Consequently, although the observed polarization 
will remain well-defined for periods of up to a million cycles or so, over the long term it will 
vary in a completely unpredictable way. This is what is meant by the phrase unpolarized 
radiation at a particular wavelength. 

                                                 
6 This was pointed out by Robert Leighton in chapter 2 of his outstanding book Principles of Modern Physics 
(Leighton, 1959) (unfortunately out of print, but the lab has a few copies). The analysis provided here is partly based 
on his text, which we refer to as Leighton. 
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Breaking the symmetry of the gas by applying a magnetic field 
Because the interior of the hot gas described above is isotropic (on average), it displays maximal 
directional symmetry: it is spherically symmetric and thus all directions are equivalent. When a 
constant, uniform magnetic field is then applied to the hot gas, this maximal symmetry is broken 
(or reduced), because the direction B̂  of the magnetic field is now uniquely defined by its 
presence. Because the spectral lines of the atomic emissions are split into multiple, nearby 
wavelengths by the application of a magnetic field (as demonstrated by Zeeman), the atoms are 
influenced by the field and are thus aware that the direction B̂  is no longer equivalent to other 
spatial directions in the gas. This is what is meant by the phrase broken symmetry: the originally 
isotropic spatial structure of the gas is now made less symmetric by the field’s presence. 
However, the symmetry of the spatial structure is reduced in almost the gentlest way possible: 
the interior of the gas is still homogeneous (on average), and only one direction (or Cartesian 
coordinate axis) has been defined by the direction of the uniform magnetic field; the gas remains 
rotationally symmetric about the applied field direction.  

We now ask the following question: of all the possible simple-harmonic, periodic orbits available 
for an oscillating atomic charge, what orbital shapes are consistent with this reduced symmetry, 
that is, what orbital shapes (in 3-D space) require reference to only one spatial direction (or 
axis)? As shown in Figure 3, the only available orbital shapes are: (1) a linear oscillation along 
the specified axis, and (2) circular motion in a plane perpendicular to the axis. Consider these 
fundamental orbits shown in Figure 3. Because the applied magnetic field is described by a 
vector, the axis it defines is asymmetrical in the sense that the direction parallel to B̂  is 
distinguishable from the direction antiparallel to ˆ.B  Consequently, right-handed and left-handed 
circular orbits are also distinguishable, giving the three distinct simple-harmonic orbits shown.  

Incidentally, in the limit of a vanishingly-small magnetic field, all three of the simple-harmonic 
orbits shown in Figure 3 would have the same angular frequency of motion, 0 ,ω  because of the 
spherical symmetry of the potential in which the charge moves. These three orbits are not only 
linearly independent (none can be formed from a linear combination of the others), but also 
orthogonal, and they form a basis from which all other simple-harmonic orbits with frequency 

0ω  may be constructed through linear combinations of them (by choosing the appropriate 
amplitude and phase of each of the three basis orbits). If there were no magnetic field present, 

Figure 3: Orbital shapes which honor the reduced directional 
symmetries of the hot gas once a magnetic field is applied. 
The description of each orbit must require the specification 
of only one unique axis, which is that axis defined by the field 
direction. Thus only two orbit shapes are permitted: 
oscillation along the axis and circular motion in a plane 
normal to the axis. The circular motion may be right-handed 
or left-handed, giving the three distinct simple-harmonic 
orbits shown. 

 

B
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then one would also be free to choose the direction of the axis defining these basis orbits, again 
because of the overall average spherical symmetry of the hot gas. 

In the presence of a nonzero magnetic field, however, prudence would dictate that these basis 
orbits be aligned with the field as in Figure 3. Because each of these three orbits has a 
relationship to the magnetic field vector which differs from the other two (remember, even the 
right-handed and left-handed circular orbits can be expected to react differently to the field’s 
presence), one might expect that each could have its angular frequency affected by the magnetic 
field independently of how the field affects the others. As we shall see in the next section, these 
are indeed the classical orbits whose individual frequency shifts result in spectral line splitting as 
described by Lorentz’s theory of the Zeeman Effect. 

Harmonic oscillator with an applied magnetic field 
We now shift our focus from symmetry considerations to analyze the forces generated on our 
charge by an applied magnetic field as it oscillates in its harmonic oscillator potential, again 
using classical physics for the calculations. Taking the center of the potential well as the origin 
of our Cartesian coordinate system, the 3-dimensional, Hook’s law force on the charge at 
position ˆ ˆ ˆr xx y y zz= + +

  was originally (before the application of )B


 

 
2

2 2 2
0

0 0 0; ;

F m r m r

x x y y z z

ω

ω ω ω

= − =

∴ = − = − = −



 



  

  (27.5) 

where 0ω  is the charge’s angular frequency of oscillation about the center of the potential well. 
Applying a magnetic field oriented along our system’s z-axis, ˆ,B B z=



 the field will exert a 
Lorentz force on the moving charge: 
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  (27.6) 

The B subscripts in (27.6) remind us that these are the additional accelerations introduced by the 
magnetic field. Combining this result with that of (27.5) results in the differential equations for 
the charge’s position coordinates when subject to both the original harmonic oscillator potential 
as well as the magnetic field: 

 2 2 2
0 0 0; ;q q

m mx B y x y B x y z zω ω ω= − = − − = −       (27.7) 

The differential equation for the z coordinate is unchanged by the presence of the field, and its 
solution is just a sinusoidal oscillation along the z-axis. On the other hand, the field has coupled 
the two 2nd-order differential equations for the x and y coordinates. As shown in Prelab Problem 
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2 on page 20, the two solutions to the coupled equations for x and y correspond to circular 
motions in the x-y plane, orbiting in opposite senses, with the two angular frequencies  

 ( )0 02 2;q q
m mB Bω ω ω ω+ −= − = − +   (27.8)  

(assuming that 0 | 2 | ).q m Bω 2  These three solutions to (27.7), a linear oscillation along B̂  
with angular frequency 0ω  and two circular orbits around B̂  at frequencies slightly above and 
below 0 ,ω  are the elements of the set of normal modes for the classical motion of our charge in 
the presence of a uniform magnetic field. Note that these are the same orbital motions we 
identified using purely symmetry considerations and depicted in Figure 3 on page 5. If a charge 
were originally in some linear combination of these three modes before the application of the 
field, then as the field is turned on, the frequencies of the modes would shift, and the charge 
would now have a complicated, no longer generally elliptical, motion composed of the separate 
oscillations shown in Figure 3, emitting three components of radiation each with its own 
frequency and polarization relative to an observer. 

Consequences of the analysis for experimental measurements 
The satisfying consistency between the symmetry considerations and the dynamical calculations 
outlined above provides some level of confidence that this approach to the analysis of Zeeman 
splitting may prove useful to the understanding of the internal workings of atoms. If this classical 
analysis of charge motion during spectral line generation applies to atomic systems, then we 
expect that the application of a magnetic field to an atom should split each observed spectral line 
into three lines:  

• A line remaining at the original spectral line frequency 0ω  and with linear polarization parallel 
to the direction of the magnetic field, generated by oscillating charge motion along B̂  (the z-
axis in the analysis of equations (27.7)). 

• Two lines whose frequencies change by ( 2 )q m Bω∆ = ±  away from the original line 
frequency 0.ω  Generated by circular charge motions in a plane normal to ˆ,B  their 
polarizations will vary from linear when observed from a direction perpendicular to B̂  to 
circular when observed from a direction parallel to ˆ.B  

Importantly, the frequency shifts of the two “daughter” spectral lines should be proportional to 
the magnetic field strength B and the charge’s charge-to-mass ratio .q m  As shown in Prelab 
Problem 2 on page 20, the senses of the circular (or elliptical) polarizations of the two shifted 
lines (when observed from an appropriate direction) will depend on the sign of the charge q.  
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As mentioned in the Introduction, Zeeman and Lorentz applied this theory to observations 
of spectral line splitting and determined that spectral lines could be generated by motions 
of J. J. Thompson’s electron within an atom (they got the same sign and magnitude for 
q m),  thus for the first time clearly identifying an atomic constituent and providing some 
evidence of the internal workings of an atom. 

One last, very important point about the application of this simple, classical theory: if it should 
prove inadequate to describe the observed spectral line splitting by an applied magnetic field, 
then there must be additional physics going on within an atom which the classical theory is 
unable to elucidate. Of course, and as you will most definitely find as you conduct the 
experiment, this classical theory is indeed unable to adequately describe the behavior of electrons 
in atoms—the quantum theory is absolutely necessary to make sense of how the electrons 
behave. On the other hand, a very few spectral lines do exhibit splitting which is well-described 
by the Zeeman-Lorentz theory, especially in lighter atoms such as neon, and thus the 
identification of the electron as an atomic constituent using the theory was still a reasonable 
conclusion, even though it is not the whole story. 
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THE APPARATUS 
A lamp containing neon gas is inserted between the pole pieces of a large electromagnet. The 
light from the lamp is collimated and passed through a Fabry-Pérot interferometer (described 
below) before being focused onto the input slit of a prism spectrometer. The spectrometer output 
is detected by a sensitive video camera; its image of the spectral lines is displayed on a video 
monitor. The optical arrangement is shown in Figure 4. The large electromagnet and its 
associated power supply can generate fields of up to just under 2 Tesla. 

Figure 4: Side-view photo and top-
view diagram of the optical arrange-
ment of the experiment apparatus. 

(a) neon lamp; (b) electromagnet; 
(c) Fabry-Pérot interferometer with 
collimation lenses; (d) spectrometer 
entrance slit; (e), (g) prism spec-
trometer lenses; (f) prism; (h) low-
light video camera (not shown in the 
photo). 
 

 
The prism spectrometer (components d–h in Figure 4) forms an image of its entrance slit on the 
video camera’s image plane. Because the prism’s index of refraction depends on wavelength 
(higher index at shorter wavelengths), the prism will bend light of different colors through 
different angles. Thus the spectrometer forms multiple images of the slit at its output, one for 
each line wavelength in the neon lamp’s spectrum, forming an image similar to the spectrum 
shown in Figure 1. Because the camera and its monitor are monochrome the image on the 
monitor is in shades of gray. Additionally, the camera is mounted on its side, so the spectral lines 
on the monitor are horizontal rather than the vertical lines of Figure 1. 

Fabry-Pérot interferometer 
The prism spectrometer’s wavelength resolution is woefully inadequate to detect the spectral line 
splitting due to the Zeeman Effect (see Prelab Problem 4 on page 21). To resolve the very small 
wavelength shifts involved (less than an Ångstrom), the apparatus uses a small Fabry-Pérot 
interferometer (or etalon).7 The etalon uses a pair of partially-reflective mirrors to form a 
resonant cavity. A plane wave from the source is incident on one mirror, and some of its light 

                                                 
7 The French physicists Charles Fabry and Alfred Pérot first described their interferometer in an 1897 paper 
(Mulligan, 1997). Their invention remains of great importance today; for example, it is a key element of the design 
of the LIGO interferometer. 
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enters the cavity. Energy filling the cavity can gradually escape via the other partially-reflective 
mirror and continue on to the prism spectrometer. At a resonance of the cavity, the light 
contained within it can become greatly intensified, and therefore so can the power which escapes 
through the mirrors. The cavity acts as a highly selective (high-Q) filter, or, for this application, 
an analog of a very high resolution diffraction grating. 

To understand how the etalon works, first consider the case of two ideal, parallel mirrors with a 
plane wave reflecting back and forth between them at some angle θ (Figure 5). The left-hand 
mirror in the figure fills the y-z plane at 0.x =  The right-hand mirror fills a parallel plane at 
position .x d=  The plane wave leaving the left-hand mirror has wave vector ˆ ˆ,x yk k x k y= +



 as 
illustrated in the figure. Physics 6 General Appendix D: The Wave Vector shows that the phase 
of this wave at any point in space is then given by ( ) .x yr k r k x k yφ = ⋅ = +



   The wave reflects 
from the right-hand mirror and arrives back at the left-hand mirror. At a resonance of this optical 
cavity, the two waves interfere constructively, which means that they are in phase at every point 
on either mirror; in particular, they must be in phase at all points on the left-hand mirror.8 

The reflected wave’s phase upon arrival at the left-hand mirror is the same as what the original 
wave’s phase would have been if it had continued on past the mirror at d and arrived at a plane at 

2 ,x d=  as illustrated in Figure 5. The original wave’s phase in the plane 0x =  is 
(0, , ) .yy z k yφ =  Its phase in the plane 2x d=  is (2 , , ) 2 ,x yd y z k d k yφ = +  which is the same as 

the reflected wave’s phase as it returns to the left-hand mirror. For the waves to be in phase at the 
left-hand mirror, their difference must be a multiple of 2π, so: 

 ( )
(2 , , ) (0, , ) 2 2 (integer )x

x

d y z y z d k m m
k m d

φ φ π
π

− = =
∴ =

  (27.9)  

                                                 
8 We assume for this discussion that the amplitude reflection coefficient of each mirror 1.Γ =  Similar results would 
obtain for other choices for the relative phase of each mirror’s reflection, but the algebra for the more general case is 
messier and not particularly “illuminating.” 

 
Figure 5: A plane wave with wave vector 



k  leaves the left-hand mirror (at position 0)x =  and 
reflects off the mirror at .x d=  Wave crests (lines of constant phase) in the original wave are 
shown by the thin solid lines; the reflected wave’s crests are denoted by the thin dashed lines. 
The phase of the reflected wave as it returns to the left-hand mirror is the same as that of the 
original wave if it were to continue on to a surface at position x d= 2  (dashed wave crests 
continuing on to the right past the mirror at d). 

θ
ˆxk x

ˆyk y
k


d 2d0

http://www.sophphx.caltech.edu/Physics_6/Appendix_D_wave_vector.pdf
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Equation (27.9) with m a positive integer is the same criterion found for a 1-D resonant cavity 
with partially-reflective terminations analyzed in Physics 6 General Appendix A: Transmission 
Line Resonance due to Reflections (see the text surrounding equation (32) in that document). 

Since cos ,xk k θ=  where 2k π λ=  is the magnitude of the wave vector ,k


 we can rephrase the 
resonance requirement (27.9) as: 

  cos ; at resonance 
2

m m
d
λθ = ∈   (27.10)  

The positive number m is called the order corresponding to an angle θ of the plane wave’s wave 
vector, and it assumes an integer value at each resonance. The order m is obviously greatest for 

0θ =  (where 2 )m d λ=  and decreases toward 0 as 2.θ π→   

For light of a given wavelength λ and a much larger separation of the mirrors ,d λ2  the etalon 
will display many resonances in the region near 0.θ =   In the 3-dimensional cavity, the set of all 
wave vectors of waves with wavelength λ and making an angle θ with the x-axis will form a cone 
about that axis (the x-axis is perpendicular to the planes of the two etalon mirrors). If 
monochromatic light (all at the same wavelength) is present in the cavity as various plane waves 
in every direction, the resonances will form bright circles (interference fringes), one for each 
integer value of the order m (Figure 6). In the space between a pair of the bright fringes shown in 
Figure 6, the angle θ corresponds to a value of the order m which is not an integer. 

Assume that a plane wave propagates in the cavity at a fixed, small angle θ. If its wavelength λ 
changes by a very small amount ,λ λ∆   then the change in the order m corresponding to a 
fixed θ (using equation (27.10)) is, to first order in ,λ λ∆  approximately  

 
constant

2 cosdm dm m
d θ

λ λλ θ
λ λ λ λ

∆ ∆
∆ ≈ ∆ × = − = −   

Figure 6: Simulated fringe pattern at the output of a 
Fabry-Pérot interferometer (etalon) when exposed to 
light of a single wavelength. Each bright ring 
represents a resonance of the cavity corresponding to 
a particular order m and corresponding angle θ. The 
mirror separation was chosen to be 13.2mm and the 
orange light wavelength λ was 595.0nm. The range of 
θ shown is up to 0.02 radians about the central axis (a 
bit more than 1°).  The innermost bright ring 
corresponds to order m = 44,403; its θ = 0.23° 
(equation (27.10)). The reflectivity of the mirrors was 
assumed to be approximately 50%, which determined 
the widths of the rings and, consequently, the 
ultimate resolution of the system. 

  

http://www.sophphx.caltech.edu/Physics_6/Appendix_A_trans_line.pdf
http://www.sophphx.caltech.edu/Physics_6/Appendix_A_trans_line.pdf
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Constant θ, change in m due to Δλ: 2dm λ
λ λ

∆
∆ ≈ − ×   (27.11)  

We’ve approximated cos 1θ ≈  in (27.11). This important expression shows that, because ,d λ2  
the change in order m∆  will be much larger than the fractional change in wavelength .λ λ∆  It is 
this property of the Fabry-Pérot interferometer which we will exploit to resolve the very small 
wavelength shifts introduced by the Zeeman Effect.  

On the other hand, equation (27.10) explicitly indicates how the angle θ would change in 
response to a small wavelength change if we hold the order m constant. For example, the 
locations of the bright fringes in Figure 6 will change their radii slightly if the wavelength 
undergoes a small shift .λ λ∆   We want to determine how to express this shift in angle θ∆  of 
a particular bright fringe (at which the order m equals some integer) as a corresponding shift in 
order m∆  of light at the original wavelength. For example if the resulting 0.5,m∆ =  then the 
bright fringe will have shifted to a new position approximately mid-way between the original 
positions of the fringes corresponding to orders m and 1.m +  Using (27.10): 

 

 due to ,  with  constant: cos ( )
2 2 2

 due to ,  with  constant: cos ( ) ( )
2 2 2

2 2equating the two expressions: cos

m m m m
d d d

m m m m m
d d d

d dm m

λ λ λ λθ λ θ θ

λ λ λθ λ θ θ

λ λ λ θ λ
λ λ

+ ∆ ∆
∆ ∆ + ∆ = = +

∆ ∆ + ∆ = + ∆ = + ∆

∴ ∆ = ∆ = ∆ ≈ ∆

  

 2dm λ
λ λ

∆
∆ ≈ ×   (27.12)  

Again, we’ve approximated cos 1.θ ≈  Note that this expression is just the negative of that in 
(27.11). To understand what is meant by (27.12), consider the example illustrated in Figure 7 on 
page 13. The middle pattern in the figure is a slice through part of the fringe pattern shown in 
Figure 6, showing the center of the pattern (behind the text identifying the wavelength, 

0“ 595.0λ = nm”), as well as a few of the innermost fringes to its right. The order numbers of 
these fringes, m = 44,403 to m = 44,397, are also identified. The images above and below the 
middle one show the fringe patterns produced by very slightly shifting the wavelength: as 
indicated in the figure, 34.7 10λ −∆ = ± × nm, giving λ λ∆  of less than 8 parts per million. With 

13.2d = mm, the fringe shifts are quite apparent, and equation (27.12) gives 1 3.m∆ = ±  

Constant m (feature), new θ 
referred to original m(λ): 
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Figure 7: An example to illustrate the meaning of the expression (27.12). The images show a slice of a 
part of the pattern in Figure 6 containing a few of the central-most bright fringes. The upper and lower 
fringe patterns result from shifting the original wavelength by the tiny amounts shown. The order 
numbers of these new, shifted fringes still equal the corresponding m values in the original pattern, but 
their new positions, when referred to the original fringe positions, have shifted by an angle equivalent 
to an order change of Δm = ±1/3. 

The interpretation of this resulting change in the order Δm is as an indication of the 
magnitude and direction of the fringe shift relative to the gap between adjacent fringes 
(since the fringes appear at integer values for m, Δm = 1 for the width of each gap).  

In this case the fringes have each moved from their original positions by about 1/3 of the fringe 
spacing (arrows in the shifted fringe images for the case of the m = 44,402 fringe). Note that in 
the lower image in Figure 7, the wavelength shift has moved the innermost bright fringe (m = 
44,403) close to the etalon axis, forming a bright, disk-shaped central fringe. On the other hand, 
the interpretation of equation (27.11) is that its Δm gives the position formerly occupied by the 
original fringe relative to its new, shifted position, thus the change in sign relative to (27.12). 

Some final comments about the accuracies of keeping terms only to first order in λ λ∆  and of 
approximating cos 1θ ≈  in equations (27.11) and (27.12). As noted above for the example shown 
in Figure 7, 510λ λ −∆ <  for 1 3.m∆ =  Even for 2m∆ =  the resulting 55 10 ,λ λ −∆ < ×  so 
keeping only terms to first order in λ λ∆  results in an error of only about 0.01%. As for cos ,θ  
the maximum θ shown in Figure 7 is 1°, so 41 cos (1°) 1.5 10 ,−− ≈ ×  and at the position of the 
fringe with 44,401m =  shown in the middle image of Figure 7, 51 cos 5.3 10 ,θ −− ≈ ×  again 
resulting in an error of less than 0.01%. 

Viewing Zeeman splitting 
The neon lamp emits many spectral lines (a few of the brighter ones are shown in Figure 1 on 
page 1), and they all exhibit splitting in response to an applied magnetic field. All of these 
various wavelengths are filtered by the etalon and then focused on the entrance slit to the prism 
spectrometer (Figure 4). The prism separates the spectral lines, so that in the video camera’s 
monitor, each spectral line is isolated and displays etalon fringes similar to those in Figure 7. 
The camera and monitor are monochrome, however, so all spectral lines are displayed as gray. 
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Figure 8 below shows a simulated example of the camera’s image of a single spectral line, the 
red 626.6nm normal Zeeman line you will primarily use for data taking. With no applied B, the 
fringe pattern is that for the single, unperturbed line wavelength. As the magnetic field is 
increased, two “satellite” fringes separate from each original fringe. The magnitude of the 
change in etalon order Δm for each of these satellite fringes increases linearly with B, as derived 
in the solution to Prelab Problem 5 on page 21.  

 
Figure 8: Simulated Zeeman splitting of the neon 626.6nm spectral line, as seen through the 
experiment’s apparatus using the Fabry-Pérot etalon and the prism spectrometer.  As in the 
images shown in Figure 7, the center of the etalon fringe pattern is about 1/5 of the way over 
from the left edge of each image. The mirror separation d = 13.2mm, and the step in Δλ between 
successive images is about 2.48×10−3nm. Each “satellite” fringe (a fringe whose wavelength varies 
with B-field) has a lower intensity than its associated stationary fringe. 

Note that whenever |Δm|=1/3, 2/3, 4/3, etc., then the satellite fringes are spaced 
symmetrically within the gaps between the stationary fringes; when |Δm|=1/2, 3/2, etc., 
then two satellites merge to form a single fringe between the stationary ones; and when 
|Δm|=1, 2, etc., then all fringes recombine to reproduce the original, 0-field fringe pattern.  
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Hall probe 
A Hall probe is used to accurately measure the magnetic field to which the neon lamp is exposed. 
The Hall probe sensor is a small, thin, rectangular semiconductor wafer. Current HI  from a 
power supply flows across the wafer from one edge to the opposite, and the voltage HV  across 
the other two edges is measured by a sensitive voltmeter. Ideally, the measured HV  is 
proportional to the product of the component of the magnetic field normal to the surface of the 
wafer, B⊥ , and the current HI , because a Lorentz force generated by the field causes the charge 
carriers in the wafer to be deflected toward one edge as they travel through it. This build-up of 
mobile charge carrier density along one edge in the (overall neutral) piece of material creates an 
electric field orthogonal to the direction of current flow, which is sensed by HV . 

You calibrate the hall probe in two steps: 
(1) Hold the probe far from any magnets and oriented parallel to the Earth’s field. In this 

case 0HV = . Use the offset or null function of the voltmeter attached to the probe to zero 
out any residual voltage reading. 

(2) Insert the probe into the calibration magnet (a small, permanent magnet) and adjust the 
Hall probe power supply current until the measured HV  corresponds to the value of the 
calibration magnet field B . 

Following calibration the Hall probe is inserted into a bracket to the left of the electromagnet. 
Once the neon lamp is lowered out of the gap between the magnet pole pieces, the Hall probe 
bracket may be slid forward to insert the probe sensor into the gap, measuring the applied field 
(Figure 9). 

 
Figure 9: The back side of the magnet and neon lamp support showing where the Hall probe 
sensor is inserted for a magnetic field measurement. The thumbscrew is very slightly loosened so 
that the lamp may be lowered out of the gap between the magnet pole pieces. The hall probe is 
then guided into the gap by sliding its support bracket forward. 

Thumbscrew

Hall Probe
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PROCEDURE 
The procedure divides naturally into four parts: 

• Calibration and alignment of the etalon and Hall probe 
• Spectrometer adjustments and identification of the normal Zeeman spectral lines 
• Data gathering for various magnetic field strength settings 
• Investigation of line polarizations 

Each of these parts will be discussed below. 

Calibration and Alignment 
Hall probe 

When raising or lowering the neon lamp, MAKE SURE YOU SUPPORT THE LAMP 
FROM BELOW so that if you inadvertently remove its thumbscrew, the lamp does not fall 
out of the magnet gap and break.  

If the lamp should become stuck with the thumbscrew removed, DO NOT reduce the 
magnetic field while leaving the lamp unattended, because it may then fall and break. 

Calibrate the Hall probe as described in the Hall probe section (page 15) and mount it in its 
support bracket. With the neon lamp lowered out of the magnet pole-piece gap (see Figure 9), 
adjust the hall probe support bracket so that it slides the probe smoothly into the center of the 
pole-piece gap. Make sure that the probe wiring is not caught on anything that could break the 
wires, and make sure that the wiring is positioned so that you will not inadvertently snag or pull 
and break one of the wires while performing a magnetic field measurement. 

Fabry-Pérot etalon 
Measure the separation distance d of the two etalon mirrors by first carefully lifting the etalon 
mirror assembly by its base plate and removing it from the apparatus to a table, then measuring d 
using calipers. Each mirror retaining ring has a pair of notches cut into it as shown in Figure 10 
on page 17. The distance between the two mirrors may be measured by inserting calipers into the 
notches as shown in the figure; a pair of notches is available on each side of the mirror assembly. 
Once the measurements are complete, carefully reposition the etalon assembly in the apparatus. 

Following measurement, the etalon mirrors must be adjusted so that they are parallel to within a 
small fraction of a wavelength of light. Unless this adjustment is done properly, the interference 
fringes produced by the etalon will have poor contrast and the instrument will fail to resolve the 
Zeeman splitting of the neon spectral lines. You perform the adjustment while looking through 
the etalon at the neon lamp and observing the interference fringes. Remove the large collimating 
lens located between the etalon assembly and the spectrometer entrance slit. Once the lens is 
removed you will have enough space to look through the etalon assembly at the neon lamp.  
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The interference fringes will appear as dark, concentric arcs across the image of the lamp, 
centered on a dark disk or ring somewhere in the lower half of the image of the lamp. As you 
move your head to look through different parts of the etalon mirror, the central fringe disk will 
change size and color as the surrounding arcs move toward or away from it. The fringes move 
radially inward or outward as you move your head because the distance d between the mirrors 
varies: the mirrors are not parallel. 

Make VERY SLIGHT adjustments to the mirror gimbal micrometer screws to make the mirrors 
parallel (Figure 11). When the mirrors are parallel, the central interference disk will not change 
size or color and the fringe arcs will not move radially inward or outward as you move your head 
to look through different parts of the etalon mirror. If you notice any changes to the fringe 
pattern, then you must continue to work to improve the alignment. Once the alignment is 
complete, carefully replace the collimating lens. 

 
Figure 10: The etalon mirrors are pressed against the two retaining rings on the inside surfaces of 
the mirror mounts. Measure the mirror separation by inserting calipers into the notches in the 
retaining rings (there is a pair on each side of the mounts; only one pair is visible in the photos). 

Figure 11: The etalon mirror mount showing the 
gimbal adjustment micrometers. Each is labelled: 
“V” for vertical alignment, “H” for horizontal. Only 
the knobs with the numerical scales should be 
adjusted (the scales are in microns). After each small 
adjustment of one of the micrometers, recheck the 
alignment by moving your head while watching the 
interference fringes.  

Do not touch the etalon adjustment knobs or the 
mirror mounts while checking the alignment. 

 

 

Measure inside the 
notches on each side
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Spectrometer adjustments and line identification 
Rotate the spectrometer imaging telescope (the one with the camera) toward you by pulling on 
its support brace; you should eventually see spectral lines appear in the camera’s video monitor. 
Adjust the slit width so that the spectral lines are broad enough to clearly see the bright 
interference fringes. Adjust the camera focus and f-stop to optimize the brightness and sharpness 
of the interference fringes on the video monitor. 

The two normal Zeeman spectral lines of neon are at 585.2nm (yellow) and 626.6nm (red). The 
585.2nm line is the shortest wavelength bright yellow line in the neon spectrum. Use this fact to 
identify this line on the video monitor screen and rotate the imaging telescope to place it near the 
top of the video screen. The 626.6nm line will then also be on the monitor screen, but you must 
identify it. 

Do not turn the magnet power supply on or off unless its output voltage is turned down all 
the way to 0. Otherwise, the large voltage induced by the magnet inductance to the sudden 
change of current can destroy the power supply. 

Activate the magnet power supply and increase the current through the electromagnet. You 
should see Zeeman splitting of all of the spectral line fringes displayed on the monitor. If the 
fringes become generally very hard to see, check the camera focus. If they remain very faint or 
blurry, then the etalon is probably not properly adjusted. The 585.2nm line normally has fringes 
which are very hard to see, but you can readily identify Zeeman splittings with Δm = 1 or Δm = 
2, because for these order shifts the original, 0-field fringe pattern reappears (look again at 
Figure 8 on page 14). From the answer to Prelab Problem 5 you know that both normal Zeeman 
lines have the same Δm fringe shift at all field settings, so identify the 626.6nm line by finding 
the only other line in the spectrum with fringe splittings matching the 585.2nm line at both Δm = 
1 and Δm = 2. 

The 626.6nm normal Zeeman spectral line should have satellite fringes which are visible at 
intermediate (non-integer) Δm values. If they are not, then the etalon probably needs 
adjustment. 

Data acquisition 
Once you have identified the 626.6nm normal Zeeman line, use this line for data taking. Adjust 
the magnetic field to establish various identifiable Δm settings from  Δm = 1/3 to Δm = 2 (Δm = 
1/3, 1/2, 2/3, 1, 4/3, etc). For each setting, carefully lower the neon lamp and measure the 
magnetic field using the Hall probe. You will run through the range of Δm settings several times, 
repeating the measurements. 
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Investigation of line polarizations 
A rotatable linear polarizer is available which may be positioned in front of the spectrometer 
entrance slit; your TA can show you how to use it. By rotating the polarizer you can check 
Lorentz’s theory regarding the fringe polarizations. 

Securing the apparatus 
• Adjust the magnet power supply to 0 and then turn it off.  
• Turn off the neon lamp. 
• Carefully remove the Hall probe from its support bracket and insert it into the calibration 

magnet. 
• Rotate the spectrometer imaging telescope so that the camera is no longer an obstacle to 

people walking past the apparatus. 

Make sure that you have accurately measured the 
etalon mirror separation before leaving the lab! 

ANALYSIS 

Create a text file with a single (Δm, B) data value pair on each line (as in the CurveFit sample 
data file Zeeman.dat), so that you have several lines for each Δm, each line with its own Δm  and 
a single measured B value (separate the values by a space or tab). Load this file into CurveFit, 
and you may use the CurveFit palette menu selection Modify data points: Basic data 
manipulations: Analyze Y data and assign σy’s to calculate the uncertainties in your B 
measurements for each Δm value. 

Fit the Δm vs. B data to test Lorentz’s theoretical prediction for the normal Zeeman spectral line 
you used. Should the fit be linear (see Prelab Problem 5)? Why should you fit using a linear 
relation y a b x= +  rather than the strict proportion y b x= ? Should the intercept be consistent 
with 0? What calibration issue in your experiment might cause a nonzero intercept? Determine a 
value and uncertainty for e/m of the electron from your fit. What are the major sources of 
systematic error? How does your value compare to the currently accepted experimental estimate 
for e/m? 
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PRELAB PROBLEMS 

1. Consider the orbital motions depicted in Figure 3 on page 5 of the text. For a distant observer 
located in the plane containing the circular orbits, and for each of the three orbital paths 
shown, what would be the resulting polarization at the observer’s location of the 
electromagnetic radiation emitted by a moving charge if it were to follow that path? What if 
the distant observer were instead located somewhere on the axis defined by the magnetic 
field direction? Which is the situation applicable to the experimental set-up you will use? 

2. Consider the pair of coupled, 2nd-order differential equations for x and y in (27.7), repeated 
below: 

 
2

2

0

0

q
m
q
m

x B y x

y B x y

ω

ω

= + −

= − −

 

 

  

a) Show that the functions ( ) cos ,x t tω=  ( ) siny t tω=  solve these differential equations, 
for a suitable choice for the angular frequency ω. Show that the two allowed values of ω 
are given by: 

 ( )22
0

1 1
2 2B Bω ω ω ω= − ± +   

where the cyclotron frequency ( ) .B q m Bω ≡   

b) Taking 0ω  to be positive, then if 0| | ,Bω ω  the two values for ω simplify to: 

 ( )0 0
1 1
2 2;B Bω ω ω ω ω ω= − = − +    

Each solution represents circular motion around the origin in the x-y plane. What is the 
sign of ω for the solution corresponding to each sense of rotation about the z-axis shown 
below (remember that B



 is in the same direction as ˆ)?z  

    

Right-hand sense around B


 ˆ( ).z   Left-hand sense around B


 ˆ( ).z  

c) For which sense of rotation shown above will 0| |ω ω>  if the moving charge is an 
electron ( 0)?q <   

B


x̂

ŷ

x̂

ŷ

B
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3. Calculate an estimate of the value for the cyclotron frequency | | | |B q m Bω =  for an electron 
in a 1 Tesla magnetic field, using the following method (which will be good practice for 
many calculations in Physics 7):  

a) Since B is given in SI units, using SI units throughout will result in the SI value for ω, 
which is, naturally, rad/sec. 

b) The magnitude of the electron charge, e, is also used as a unit of charge, so let’s stick 
with that, rather than looking up its SI value (in coulombs). Thus we need a value for m 
which is compatible. Therefore we use the rest energy of the electron in electron volts 
(eV), 2 60.511 10m mc→ = × eV. This means that 2( )e mc  has units of volt−1, an SI unit 
(since the “e” in eV in the denominator cancels the numerator’s electron charge e). 

c) Therefore 2 2| | ( / ) ,q m c mc e=  and we need only know the speed of light c in SI units and 
the electron’s rest energy in eV to determine the electron charge/mass ratio in SI units 
(coul/kg = meter2sec−2volt−1).  

Use this method to determine a numerical estimate of ,e m  and then show that in a 1 Tesla 
field 11| | 1.76 10Bω ≈ × rad/sec. What is 0| |,Bω ω  where 0ω  is the angular frequency of the 
626.6 nm spectral line of neon? Is the criterion 0| |Bω ω  of Problem 2(b) satisfied? 

4. Given the results of Problems 2 and 3, and keeping terms to first order in 0 ,Bω ω  show that 

 
0 0

1
2

Bωλ
λ ω
∆

=    (27.13) 

where 0λ  is the wavelength corresponding to 0.ω  Calculate the expected wavelength shift 
λ±∆  of the neon 626.6 nm spectral line produced by a 1Tesla field. How does this shift 

compare to the approximately 8Å width of the spectral lines shown in Figure 1? 

5. Using equations (27.12) (on page 12) and (27.13), the definition ( ) ,B e m Bω ≡  and the 
separation d of the etalon mirrors, derive an equation relating the magnetic field strength B to 
| |m∆  for the observed fringe splitting (as illustrated in Figure 8). Your equation should be 
independent of the wavelength 0λ  (and 0 ).ω  If 13.2d = mm, and using your answers to the 
previous problems, what is the required B to produce a Zeeman splitting of order 1?m∆ =  

You will need the equation you derive in this last problem to analyze the data you collect 
during the experiment! Make sure you get it right! 
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APPENDIX A: QUANTUM THEORY OF ZEEMAN SPLITTING 

The actual splitting of most atomic spectral lines in response to an applied magnetic field does 
not follow the classical, Lorentz-Zeeman theory. Observed splitting of the spectral lines of neon 
can be into from 2 to 9 lines each; only the two lines at 626.65nm and 585.25nm (wavelengths in 
air) behave as predicted. In this appendix we very briefly summarize the consequences of the 
modern, quantum-mechanical theory of atomic structure which can correctly describe the 
anomalous Zeeman splitting exhibited by the majority of neon’s spectral lines. 

Angular momentum and magnetic moment of a single atomic electron 
The Coulomb field of the nucleus forms, to an excellent approximation, a central potential well 
within which one or more electrons can be bound. As in the classical case, the total quantum-
mechanical angular momentum of an isolated atom is a constant of the motion, and thus its 
angular momentum eigenstates may also be chosen to be eigenstates of the Hamiltonian (energy) 
operator H  (i.e., stationary states). Consider first a single electron bound to the atom’s nucleus. 
The total angular momentum j



 of the electron is the vector sum of two parts: its orbital angular 
momentum ,l r p= ×



   which is determined by the electron’s spatial state (i.e. wave-function), 
and its intrinsic spin angular momentum s  (which is an inherent, quantum-mechanical property 
of the electron that has no classical analog).9 Thus, for any particular single-electron state 

.j l s= +




 10  

Because the three Cartesian components of any quantum-mechanical angular momentum 
operator J



 do not commute, the complete, 3-dimensional angular momentum vector cannot be 
defined for any quantum state. States can be found, however, which are simultaneously 
eigenstates of the (squared) magnitude of the angular momentum operator, ,= ⋅2J J J

 

 and one 
Cartesian component (conventionally, the z-component), .ZJ  In the case of a single electron, its 
orbital angular momentum eigenstates | ; zl lα ñ are characterized by two angular momentum 
quantum numbers l and zl  such that 

 
{ }
{ }
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z z

z z z z

l l l l l l l
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α α

= + ∈

= ∈ − − + −

2

Z

L

L

Z 

Z 

ñ ñ;

ñ ñ;
  (27.A.1) 

                                                 
9 The discovery of electron spin involved many physicists during the 1920’s. Although demonstrated experimentally 
by the Germans Otto Stern and Walther Gerlach in 1922, their results were misinterpreted. The Dutch physicists 
Uhlenbeck and Goudsmit and the Austrian-Swiss Wolfgang Pauli are generally credited with the first successful 
theory of the effects of electron spin on atomic structure. 
10 We use lower-case letters j, l, and s to represent the total, orbital, and spin angular momenta of a single atomic 
electron state. Upper-case letters J, L, and S are used for the net resulting angular momenta of an assemblage of 
atomic electrons. Bold, upper-case characters are used for the corresponding quantum-mechanical operators. 
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The extra α in the state’s ket vector | ; zl lα ñ represents all the other quantum numbers required to 
uniquely define that state.11 

The electron’s intrinsic spin angular momentum is characterized by the permanently-fixed 
quantum number 1 2,s =  making the electron a fermion subject to the Pauli Exclusion 
Principle: no two electrons may occupy identical quantum states. The z-component of the 
electron’s spin angular momentum has a quantum number which may take on only two values: 

1 2.zs = ±  Because the electron’s spin represents an independent degree of freedom, its 
eigenstates can be chosen to be simultaneously eigenstates of its orbital angular momentum, so a 
single-electron state vector, including spin, can be written as | ; z zl l sα ñ.  Any particular single-
electron quantum state may be expanded as a linear combination (or coherent superposition) of 
the complete set of | ; z zl l sα ñ  for all the various allowed values of the quantum numbers. 

Because the electron carries electrical charge –e, its orbital and spin angular momenta generate 
magnetic dipole moment vectors which add to produce an electron state’s total magnetic moment  

.m  A magnetic dipole moment is associated with the orbital angular momentum of the single-
electron state | ; z zl l sα ñ  because the orbiting charge of the electron creates a tiny current loop, 
thus producing a magnetic dipole field. Therefore the magnetic moment quantum vector operator 
M


 is proportional to the orbital angular momentum operator:  .Bµ= −M L
 

 Bµ  is called the Bohr 
magneton and has a value of approximately 55.79 10−× eV Tesla ;  its expression in terms of 
fundamental constants is shown in (27.A.2). The minus sign arises because the electron has a 
negative charge. Since M



 and L


 are parallel, the z-component magnetic moment operator ZM  
is proportional to ,ZL  which has eigenvalue zl  for an electron in the state | ; z zl l sα ñ.  Therefore 

 | ; | ; | ; ;
2B B B

e
z z z z z z z

el l s l l s l l l s
m

α µ α µ α µ= − = − ≡Z ZM L Z

ñ ñ ñ   (27.A.2) 

Ignoring the effects of the electron’s spin for a moment, the presence of an externally applied 
magnetic field will shift the | ; zl lα ñ state’s energy by the potential energy of this dipole with 
respect to the field:12  

 ; | | ;B B zz zE l l B l l l Bα α µ= − ⋅ =M




⋅ ñ ⋅ ñ   (27.A.3) 

                                                 
11 The concept of the state vector was integral to the matrix mechanics theory of quantum phenomena, first 
conceived by the German physicist Werner Heisenberg and later formulated by him and his colleagues Max Born 
and E. Pascual Jordan in a series of seminal papers in 1925; Heisenberg was awarded the 1932 Nobel Prize “for the 
creation of quantum mechanics.” The British physicist Paul Dirac introduced the modern bra and ket notations for 
quantum state vectors, as well as the Dirac delta function ( )rδ

  and the notation ħ for h/2π. We shall have more to 
say about Dirac later. 
12 This is strictly true only if 0 ,BE E∆  where 0E∆  is the energy difference to the next closest state. The formula 
presented in (27.A.3) is a result of the application of first order perturbation theory to estimate effect of the operator 
( )M B− ⋅
 

 on the energy of a state.   
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The direction of the magnetic flux density B



 determines the “z-axis” for the single, specifiable 
component of the state’s orbital angular momentum (with quantum number ).zl  Thus the 
presence of the magnetic field can break the degeneracy of the 2 1l +  states | ; zl lα ñ sharing the 
quantum number l (for 0),l >  generating energy shifts of  ,B zBlµ  one for each allowed value of 

.zl  

The electron’s spin also generates a magnetic dipole moment, but in a different, purely quantum-
mechanical way: the electron’s intrinsic magnetic moment cannot be identified with a physical 
circulation of charge (a current loop).13 Again, the spin-induced dipole moment is proportional to 
the quantum-mechanical spin vector operator ,S



 but the constant of proportionality is different: 
| ; 0, 0, | ;00B Be z z e z zg l l s g s sµ α µ α= − → = = = −ZM S M

 

ñ ñ,  where eg  is the gyromagnetic 
ratio of the electron. The most straightforward theory of the interaction of an 1 2s =  electron 
with an external electromagnetic field requires that 2,eg =  and this value implies that the 
electron may have .BzM µ= ± 14 An early calculation based on the current, more modern and 
comprehensive theory of the interaction between electrons and the electromagnetic field 
(quantum electrodynamics, or QED) predicted that 2 1.0011614,eg =  about a 0.1% 
correction.15 Since an electron’s orbital and spin angular momentum vectors need not be parallel, 
and magnetic moment due to spin is different from that due to orbital angular momentum, the 
total magnetic moment they generate and the resulting energy shift BE B= − ⋅M




⋅ ñ ⋅ ñ are not 
necessarily simple to calculate.  

Multiple-electron atoms; g-factor 
An atom with n electrons has a total angular momentum ,J L S= +

 

 where  L


 and S


 are vector 
sums of the n electrons’ respective individual orbital and spin momenta l



 and .s  Because the 
relative orientations of the individual electrons’ vector momenta can assume a variety of 
                                                 
13 “Spin” cannot be caused by something physically “going around,” because r p×

   angular momentum must have 
quantum numbers which are integers (any convenient quantum mechanics text should derive this result). 
14 Paul Dirac developed the first comprehensive, relativistically-correct quantum theory of the electron and its 
interaction with the electromagnetic field in an historic, then-controversial paper of 1928. In the course of his 
investigations he postulated that not only should the spin-1/2 electron have 2,eg =  but that it must also be 
accompanied by what would later be interpreted as a companion antiparticle. Most relevant for our purposes, he 
used his theory to explain the anomalous Zeeman Effect in every detail. Dirac shared the 1933 Nobel Prize with 
Erwin Schrödinger. The positron (anti-electron) was identified by the Caltech physicist Carl Anderson in 1932, 
earning him the 1936 Nobel Prize. 
15 This value calculated by the American physicist Julian Schwinger in 1948 is engraved on his tombstone; 
Schwinger shared the 1965 Nobel Prize with Feynman and the Japanese physicist Sin-Itiro Tomonaga for their 
development of modern QED. For many years, refinements in the predicted value of ge represented the most precise 
theoretical calculations of a fundamental physical constant, more precise than even the most accurate experimental 
measurements. This changed in 2006, with an experimental measurement by a team at Harvard (Odom, Hanneke, 
D’Urso, & Gabrielse, 2006) which included a Caltech alumnus (D’Urso) who, as an undergraduate, added the 
polarizer to our experiment’s apparatus. Current QED calculations and experimental measurements have precisions 
~10−12. 
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arrangements, the magnitudes of L



 and S


 can generally take on many possible values, even for 
a fixed set of  n quantum numbers l for the electrons (they each, of course, have 1 2).s =  The 
total L



 and S


 are, of course, angular momenta, and eigenstates of the squared magnitude 
operators 2L  and 2S  may be found with eigenvalues 2 ( 1)L L +Z  and 2 ( 1),S S +Z  respectively, 
with quantum numbers L and S. The quantum number L for the total orbital angular momentum 
must be a nonnegative integer. The quantum number S for the total spin angular momentum must 
be a nonnegative integer if the number of electrons n is even; S is half-integer for n odd (e.g. 1

2 ,  
3
2 ,  etc.). The total resultant angular momentum J



 is similarly quantized, with 2J  and ZJ  having 
eigenvalues 2 ( 1)J J +Z  and zJZ  associated with quantum numbers J and .zJ  In terms of L and 
S, The range of possible values for the quantum numbers J and zJ  are 

 
{ }
{ }

, 1, , 1,

, 1, , 1,z

J L S L S L S L S

J J J J J

∈ − − + + − +

∈ − − + −





  (27.A.4) 

(Note that if S is half-integer, then so will be J and .)zJ  These relations are generally satisfied 
for the addition of any two angular momenta, not just L and S. For example, two electrons, both 
in states with 1,l =  may have a total, combined orbital angular momentum quantum number of 

1 1 0,L = − =  or 1,L =  or 1 1 2.L = + =  Their total spin angular momentum quantum number may 
be either 1 1

2 2 1S = + =  or 1 1
2 2 0.S = − =  Using (27.A.4), the possible values for the total angular 

momentum quantum number J are then: 

 0L =  1L =   2L =  

0S =   0J =  1J =  2J =  

1S =   1J =  0 or 1 or 2J J J= = =  1 or 2 or 3J J J= = =  

Clearly in many cases a given amount of total angular momentum J might be obtained by 
combining different amounts of total orbital and spin angular momenta L and S, even from a set 
of atomic electrons with fixed values for their individual orbital angular momentum quantum 
numbers l. Upon examination of the above table, two electrons, each with 1,l =  could have 

1J =  in the multi-electron eigenstates | J L S =ñ  |101ñ  or |110ñ  or |111ñ  or |1 21 .ñ  In general, 
we should expect that such a two-electron atomic state with 1J =  would arise from some 
coherent superposition (mixture) of these four |1 L S ñ  orthogonal eigenstates. 

It may turn out, though, that a given J arises in a particular multi-electron atomic state from a 
single, pure | J L S ñ state. Thus the multi-electron state is an eigenstate of both 2L  and 2S  as 
well as 2J  (rather than a coherent superposition of several such states as mentioned in the last 
paragraph). Such a state is said to be LS or Russell-Saunders coupled.16 These | J L S ñ states are 
                                                 
16 Herbert. N. Russell was a very influential American astronomer of the early 20th century. Frederick A. Saunders 
was an accomplished American physicist who made important contributions to atomic spectroscopy. They described 
their angular momentum coupling scheme in a paper published in 1925. 
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particularly well suited for the calculation of energy shifts due to an externally-applied magnetic 
field, as we now show. 

In general, for small values of the magnitude of an externally applied magnetic field B


 oriented 
along the z-axis, eigenstates of 2J  and ZJ  will experience proportional energy shifts of 

 B B zE B g J Bµ= − ⋅ =M




⋅ ñ ⋅ ñ   (27.A.5) 

For atomic states with a given quantum number J, the coefficient g is independent of zJ  and is 
called the atomic state’s g-factor. Thus the energy shift of the state is proportional to .zJ  Since 
the orientation of the z-axis is arbitrary, then as far as eigenstates of 2J  and ZJ are concerned, 
the atom’s total magnetic moment vector M



 must be parallel to and proportional to its total 
angular momentum vector .J



 However, ,J L S= +
  

 whereas we would expect that the magnetic 
moment vector ( 1) .e eM L g S J g S∝ + = + −

    

 This vector M


 would generally not be parallel to 
.J


 The quantum-mechanical resolution to this conundrum is to require that the quantum operator 
M


 be proportional to the projection of this latter vector onto the direction of :J
 17 

 1 ( 1)eg
 ⋅

∝ + − 
 

2

J SM J
J

 

 

  (27.A.6) 

We can find the value of ⋅J S
 

 as follows: since ,= +J L S
  

 then = −L J S
  

 and  

 
( ) ( ) 2

2

= − ⋅ − = + − ⋅

∴ ⋅ = + −

2 2 2

2 2 2

L J S J S J S J S

J S J S L

    



  

The LS coupled, | J L S ñ states are eigenstates of the RHS of the above expression, so for these 
states (27.A.6) becomes 

 ( 1) ( 1) ( 1)1 ( 1)
2 ( 1)e

J J S S L Lg
J J

 + + + − +
∝ + − + 

M J
 

  

Comparing this result to (27.A.5), we find that an LS coupled, | J L S ñ state’s g-factor is given by 

 
( 1) ( 1) ( 1)1 ( 1)

2 ( 1)e
J J S S L Lg g

J J
+ + + − +

= + −
+

  (27.A.7) 

Setting 2eg ≡  in (27.A.7) results in what is called the Landé g-factor for the LS coupled state.18 
Applying this result to the example we presented earlier (the 1J =  states of a two-electron 
system, each with orbital quantum number 1l = ), possible values for the  Landé g-factor are: 
| J L S =ñ  |101 :ñ 2;g =  |110 :ñ 1;g =  |111 :ñ 3 2;g =  |1 21 :ñ 1 2.g =  In the case of a coherent 
                                                 
17 Rigorously, the results presented here follow from the Wigner-Eckart theorem, part of the representation theory of 
Lie groups (physicists Eugene Wigner and Carl Eckart). 
18 The German physicist Alfred Landé published this result in 1921. 
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superposition of these states, the resultant g-factor to be used in equation (27.A.5) would be a 
weighted average of these four values. 

Spectroscopic term notation 
The individual electrons in an atom occupy stationary states with various values for each 
electron’s angular momentum quantum numbers l, ,zl  and .zs  In addition, the principal quantum 
number n determines how deeply into the nuclear Coulomb potential well an electron state 
resides and determines the electron state’s binding energy (except for usually relatively small 
corrections due to spin-orbit coupling, mutual electrostatic repulsion among the electrons, and 
several other effects). The principal quantum number n can assume only positive integer values, 
with 1n =  representing the most strongly bound states (binding energy decreases with increasing 
n approximately as 2 ).n−  

For any particular n, the orbital angular momentum quantum number l is restricted to an integer 
value in the set {0,1, , 1}.l n∈ −  Thus, for example, l must equal 0 in the 1n =  states, but l can 
equal 0 or 1 in the 2n =  states, etc. For any particular value of l, single electron states exist with 

{ }, 1, , 1,zl l l l l∈ − − + −  and with 1 2.zs = ±  Thus for a particular choice of n and l, there are a 
total of 2(2 1)l +  single-electron states, and counting all allowable choices for l, ,zl  and ,zs  there 
are a total of 22n  single-electron states with principal quantum number n. Because electrons are 
fermions, there can exist at most one electron occupying each of these states. The 22n  single-
electron states with principal quantum number n collectively make up an atomic shell. The 
2(2 1)l +  single-electron states with a specified n and l make up a subshell. It can be shown that a 
completely filled atomic subshell holding 2(2 1)l +  electrons will form a multi-electron state 
which is completely spherically-symmetric and therefore have total 0.J L S= = =  This is then 
also true for any completely filled shell as well. 

Spectroscopic notation denotes the orbital angular momentum quantum numbers of the various 
occupied atomic subshells using letter symbols from the following table: 

l value: 0 1 2 3 4 5 …  
symbol: s p d f g h … 

A specific subshell is prefixed with its n value, as in: 1s, 2s, 2p, 3s, 3p, 3d, etc. If more than one 
electron occupies a subshell, then the number of electrons is denoted by a superscript, e.g. 2p5. 
For example, the electron configuration of the ground state of neon is written as 1s22s22p6; the 
ground state of sodium is 1s22s22p63s.  

A spectroscopic term expression describes a multi-electron, LS coupled | J L S ñ state using the 
following format: 2S+1L J, where the spin multiplicity prefix is an integer (the number of possible 
values for { }, 1, , 1,zS S S S S∈ − − + − ), the value for L is denoted by an  upper-case version of 
the appropriate letter found in the previous table, and a number suffix (integer or half-integer) is 
used for the total angular momentum quantum number J. Thus 1S0 represents | 0 0 0ñ,  the term 
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for any completely filled or empty subshell; 2P1/2 for 1 1

2 2| 1 ñ;  etc. If the multi-electron state has 
odd spatial parity, i.e. | |r J L S r J L S−

 

⋅ ñ=-⋅ ñ,  then the term includes a trailing “°” as 
in 2P°1/2. For example, one particular singly-ionized, LS coupled state of neon could be described 
as: 1s22s22p5(2P°3/2), which, according to equation (27.A.7), would be expected to have a Landé 
g-factor of 4 3  ( 3

2 ,J =  1,L =  1
2 ).S =   

Racah’s Jl coupling scheme for excited atomic states 
One other common angular momentum coupling scheme should be mentioned, because it is 
particularly relevant to the theoretic analyses of the observed Zeeman splitting of the transitions 
in neon between the excited state configurations (1s22s22p5) 3p→3s and 4d→3p, transitions 
which produce most of the bright spectral lines shown in Figure 1. This scheme, known as Jl 
coupling, combines the orbital angular momentum l of a lone excited electron with the total 
angular momentum coreJ  of the remaining LS coupled core electrons (1s22s22p5 for the neon 
lines we’re considering). The resulting combined angular momentum K would be chosen from 
the set of possibilities { }core core core| |, , ( ) 1, .K J l J l J l∈ − + − +  The excited electron’s spin s 
is then combined with K to give a final total J of 1

2| |,K ±  as first described in (Racah, 1942). 19  

The accepted spectroscopic term notation used for a state defined by Jl coupling is, for example, 
1s22s22p5(2P°3/2)3p 2[5/2]2, with 2s+1[K]J as the term descriptor of the final, Jl coupled term, and 
the term describing the core electrons’ LS coupled state is listed in parenthesis. This is the 
notation used to describe neon’s atomic configurations on the NIST website (Martin & Wiese, 
2007). The g-factor for Jl coupled states is given in (Racah, 1942) as ( coreJ and coreg are the total 
angular momentum and g-factor of the LS coupled state of the core electrons, and we use the 
simple approximation 2eg = ): 

 
( 1) ( 1) ( 1)2 1 2( 1)

2 1 (2 1) (2 1)J l
core core

core
K K J J l lJg g

K K J
+ + + − ++

= + −
+ + +

  (27.A.8) 

For the neon example given above, 1s22s22p5(2P°3/2)3p 2[5/2]2, then core 3 2,J =  core 4 3g =  
(using equation (27.A.7)), 1,l =  5 2,K =  and 2.J =  The resulting 16 15 1.067.g = ≈  The two 
other Jl coupled combinations which can also result in 2J =  are: 1s22s22p5(2P°3/2)3p 2[3/2]2 
( 43 30 1.433)g = ≈  or 1s22s22p5(2P°1/2)3p 2[3/2]2 ( 7 6).g =  In contrast, if we were to simply 
LS couple the complete 1s22s22p53p electron configuration (keeping in mind the limitations on 
the possible core electron states demanded by Pauli exclusion), the possible states with total 

2J =  then have terms of  3P2 ( 3 2),g =  3D2 ( 7 6),g =  or 1D2 ( 1).g =  The consequences of 
these various possibilities on the expected Zeeman splitting of the neon spectral lines are 

                                                 
19 Giulio Racah was a mid-twentieth-century Italian-Israeli physicist who made several important contributions to 
the modern quantum theory of multi-electron atomic states and atomic spectroscopy. 
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analyzed in a later section. Of course, any Jl coupled state may be expressed as a coherent 
superposition of LS coupled states. 

Electric dipole radiation selection rules and Zeeman splitting 
Visible light has wavelengths of ~400–800 nm, thousands of times greater than an atomic 
diameter (~1–3Å). Consequently, an electromagnetic wave in this wavelength range primarily 
affects an atom’s electrons through oscillations of its electric field in the atom’s vicinity. This 
oscillating field can exchange energy (in the form of photons) with the atom and cause 
transitions between atomic states whose energy difference ,E ω∆ = Z  where ω is the angular 
frequency of the electric field oscillation. Such transitions correspond to the classical, electric 
dipole radiation discussed in the main text (pages 27-2 ff.), and are therefore known as electric 
dipole transitions. In fact, the analogy is more than just a casual resemblance to the classical 
situation.  As you will learn in your quantum mechanics course, one can represent a perturbing 
force by an operator G applied to the quantum state |ψ ñ  to generate the new state | |ψ ψ′ = Gñ ñ.  
The probability that this new state is observed to correspond to some specified state |φ ñ is given 
by the squared magnitude of the matrix element of G connecting |ψ ñ  and |φ ñ:  

 2 2| | |φ ψ φ ψ′ G|⋅ ñ| = |⋅ ñ|    

In the case of an oscillating electric field experienced by a single electron (such as the transverse 
electric field produced by a passing electromagnetic wave), the relevant operator is proportional 
to the dot product of the field’s polarization vector E



 and the electron’s electric dipole moment 
vector e− R



 ( R


 is the electron’s position operator): ( ).x y zE e e E E E⋅ = + +R X Y Z




 Thus to 
determine the probability of such a field leading to an observed transition between two single-
electron spatial states | zn l l ñ  and | zn l l′ ′ ′ ñ, 20 we must evaluate the matrix elements of the three 
Cartesian position operators 

 | | | | | |z z z z z zn l l n l l n l l n l l n l l n l l′ ′ ′ ′ ′ ′ ′ ′ ′X Y Z⋅ ñ, ⋅ ñ, ⋅ ñ    

As shown in Leighton as well as in many elementary quantum mechanics texts, these matrix 
elements will all generally vanish unless the following electric dipole transition selection rules 
obtain ( n n n′∆ = −  can be anything, including 0, as long as n l>  and ) :n l′ ′>  

 
, , : 1 and 0

, : 1
: 0

z

z z z

z

l l l s
l l l
l

′∆ = − = ± ∆ =
′∆ = − = ±

∆ =

X Y Z
X Y

Z
  (27.A.9) 

                                                 
20 We ignore the electron’s spin quantum number zs  because the oscillating electric field of the passing visible-light 
photon has little effect on a magnetic dipole moment, and the photon’s oscillating magnetic field is relatively 
insignificant because of the photon’s long wavelength (low frequency). Magnetic dipole transitions can occur, 
however, but at a very low rate (and are thus known as a class of forbidden transistions). 



 27 – A – 9 12/21/2019 
 

 
These electric dipole transition selection rules may be extended in a straightforward manner to 
LS coupled multi-electron states | J L S ñ.  The most basic requirements for an electric dipole 
transition is that only one electron changes its state, and this electron must have its 1l∆ = ±  (for 
the case of Jl coupling, the lone excited electron transitions). Additionally, the electrons’ 
combined spatial wave function must change parity. As for the atom as a whole,  

 

0, 1 ( 0 0 forbidden)
0, 1 ( 0 0 forbidden if 0)
0, 1 ( 0 0 forbidden)
0

z z z

J J J
J J J J
L L L
S

∆ = ± = → =
∆ = ± = → = ∆ =
∆ = ± = → =
∆ =

  (27.A.10) 

Justification for the rules may be found in Leighton. The relationship between the polarization of 
the emitted radiation and zJ∆  is the same as that for zl∆  in (27.A.9): for linear polarization 
purely in a plane containing the z-axis, | |z zJ L S J J L S J′ ′ Z⋅ ñ  is non-vanishing, and 0;zJ∆ =  
if 0,zJ∆ ≠  then the polarization is generally elliptical with a non-vanishing component 
perpendicular to the z-axis. 

Now consider an electric dipole transition in the presence of an applied magnetic field aligned 
with the z-axis. The field will shift the energies of states having different zJ  in accordance with 
equation (27.A.5):  .B B zE B g J Bµ= − ⋅ =M




⋅ ñ ⋅ ñ  Assume that a single electron transitions 
from 4d to 3p, with initial and final LS coupled states  | iJ L S =ñ  | 2 21ñ  (or 3D2) and | fJ L S =ñ  
|111ñ  (or 3P°1). The electric dipole selection rules listed above are satisfied, and equation 
(27.A.7) gives g-factors of 7 6ig =  and 3 2.fg =  The resulting allowable state transitions are 
shown in Figure 12. 

Figure 12: An example of Zeeman splitting of a 
hypothetical electric dipole transition of a single 
electron (4d→3p). The term symbols of the 
initial and final LS coupled states are also 
shown. Applying a magnetic field splits the 
energy degeneracy of the various initial and 
final Jz states (the splitting is greatly exag-
gerated). The selection rules in (27.A.10) allow 9 
different transitions; each has a different energy 
ΔEB because the initial and final states’ g-factors 
differ (see text). A diagram showing the relative 
locations of the 9 resulting spectral lines is also 
shown, along with each line’s initial and final JZ. 

 

4d (3D2)

3p (3P1)
ΔJz : +1 −10

Jz

+1

−1
0

+1

−1
0

+2

−2

0 0 0

0 0 0+1

+1

+1 +1

−1

−1

−1

−1 −1

−2 +2 +1
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If the two states’ g-factors were the same, then the application of a magnetic field would split the 
spectral line into only three distinct wavelengths, rather than the nine shown in Figure 12. Only if 
both g-factors = 1, would the splitting match the normal Zeeman Effect predicted by Lorentz (or 
one of the states has 0J =  and the other has 1J =  and 1).g =   

Normal Zeeman lines of neon 
Now consider the two prominent normal Zeeman lines in the neon spectrum at wavelengths of 
585.2nm and 626.6nm. Each line is generated by a transition between the configurations 
1s22s22p53p → 1s22s22p53s. For each of these lines, both the initial and final states have 9 core 
electrons (1s22s22p5) combined via LS-coupling to give the odd-parity term 2P°1/2 (J = 1/2, L = 1, 
S = 1/2). The excited electron’s orbital and spin angular momenta may assume different 
orientations relative to the ,J



 ,L


 and S


 of the core, resulting in the energy difference between 
the transitions generating the two spectral lines. 

In the case of the 585.2nm spectral line, the excited, n = 3 electron combines with the core 
electrons to form the overall nearly pure LS coupled terms 1s22s22p5(2P°1/2)3p 1S0 → 
1s22s22p5(2P°1/2)3s 1P°1 (i.e., | 0 0 0ñ→ |110ñ).  In both states the excited electron’s spin 
combines with the five 2p electrons’ spins to give an overall net S = 0. In its initial 3p state the 
excited electron’s orbital angular momentum cancels that of the core, giving a total net 

0 :J L S= = =  the overall angular momentum of the atom’s  six p electrons (2p53p) is the same 
as that of its filled, ground state configuration (2p6). Since the excited electron’s spin does not 
change orientation during its electric dipole transition to 3s, the total spin S of the atom’s 
electrons remains 0, while the loss of the excited electron’s orbital angular momentum ( 1)l∆ = −  
leaves a net 1L =  for the atom’s total orbital angular momentum. Thus 0J =  in the initial state, 
and 1J =  and 1g =  in the final state, making this transition a good example of the quantum 
analog to Lorentz’s theory. The experimentally determined g-factor of the 585.2nm final state is 
1.037±.002, only 4% away from the pure LS coupled 1P°1 state Landé value.21 

In the 626.6nm normal Zeeman transition, on the other hand, it is the initial state which has net 
angular momentum. As in the previous case, the 3p electron’s spin cancels that of the core 
electrons to give an overall net S = 0. The 1L =  orbital angular momentum of the core’s 2P°1/2 
term combines with the 3p electron’s  1l =  to yield 1J L= =  for the atom’s total orbital angular 
momentum. Thus the initial state term is the very nearly pure, LS coupled 
1s22s22p5(2P°1/2)3p 1P1 (|110ñ).  Following the excited electron’s transition to 3s, however, it 
assumes the Jl coupled state 1s22s22p5(2P°1/2)3s 2[½]°0, in which its spin combines with that of 
the core’s total angular momentum of 1 2  to yield J = 0. The measured g-factor of the 626.6nm 
initial state is 0.994±.004.  

 
                                                 
21 Measured g-factors are from (Pinnington, 1967). 
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