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INTRODUCTION 

In this experiment you will explore the properties of a cavity resonator constructed from a 
dispersive transmission line. This lumped parameter delay line is made up of 10 concatenated 
copies of the unit cell shown in figure 1. To proceed with the analysis of the resonator we must 
first derive the propagation characteristics of the transmission line; to understand the following 
discussion you must study General Appendix A: Transmission Line Resonance due to 
Reflections, which may be found at the end of the lab manual (following Experiment 27). 

 

Figure 1: A unit cell of the lumped parameter delay line. Several of these cells are connected 
together to form a transmission line, which could be termed an LC ladder. Adjacent capacitors in 
two connected cells are evidently in parallel, which is equivalent to a single capacitor with value 
C. This is how the actual line is constructed, except for capacitors of value C/2 at the two ends of 
the line. The lab units have 5 mHL = and 1 nFC = . 

DISPERSION RELATION 

The transmission line resonator will be of unit length (as in General Appendix A) and will be 
comprised of N copies of our unit cell shown in figure 1. For this analysis we will consider the 
line to be lossless, so the inductors and capacitors making up the line are assumed to be ideal.  
To derive the dispersion relation ( )kω  for waves propagating on the line, we use Ohm’s law to 
relate the voltages at adjacent nodes (connections between unit cells; refer to figure 2).  

 

Figure 2: Definitions of the various voltages and currents used to derive the dispersion relation. A 
wave ( )a x  propagates to the right. The voltage nV  is at the node connecting the thn  and 
( 1)thn +  unit cells. The current CI  is the sum of the two identical currents through the two 
parallel unit cell capacitors. The line has unit length, and the total number of unit cells is N. 
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With voltages and currents as defined in figure 2, we see that 
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Since the line is assumed to be lossless, the right-going wave ( )a x  has a propagator 
( ) exp( )x jk x= −  (see General Appendix A), so the voltages are also related by 
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Combining (1) and (2) to find the required relationship between ω and k gives 
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where the total number of unit cells is N, and we identify the cutoff frequency cω  (recall that our 
unit of length is the total length of the line, so the wave number k is the total radians of phase 
along the entire line length). Note that cω  doesn’t depend on N, the number of unit cells, but 
only on the characteristics of the unit cell. In fact, it is evident that cω  is just the resonant 
frequency of the L and C around the loop in the unit cell (figure 1) — since the two capacitors 
are in series (for currents flowing around the loop), the equivalent capacitance is / 4C , giving a 
resonant frequency of 1 / 4 cLC ω= .  

Equation (3) is the dispersion relation for this transmission line. It describes how the wavelength 
and frequency are related for a wave propagating on the line. Since the phase velocity /v kφ ω=  
varies with frequency, the line is dispersive, and, according to (3), lower frequency waves have a 
greater phase velocity than high frequency waves. This functional relation ( )kω  is plotted in 
figure 3. 
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Figure 3: A plot of the dispersion relation (3) for a line with 10 cells and length ≡ 1. The dashed 
line is the asymptotic, nondispersive relation at low frequencies: /LC k Nω ω≈ . Note that the 
group velocity dω/dk vanishes at the cutoff frequency 2c LCω ω= , where we also have k Nπ= . 

The phase delay (phase shift) across a single unit cell is /k x k Nφ∆ = ∆ = , so the dispersion 
relation gives 
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At low frequencies ( cω ω ) the sine function in (3) is approximately equal to is argument, and 
the line is approximately nondispersive with phase velocity: 
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CHARACTERISTIC IMPEDANCE 

The other important defining characteristic of the transmission line is its characteristic 
impedance Z0, defined in General Appendix A. To determine 0Z  we must derive the relation 
between the voltage at a node joining two unit cells and the current flowing from one cell to the 
next. As before, consider a line with a right-going wave passing a node in the line (figure 4). 
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Figure 4: A slight modification of the schematic in figure 2 defines the current nI  flowing through 
the wire joining the thn  and ( 1)thn +  unit cells. Instead of the single current CI  there are now 
two identical currents /2CI  flowing through the two parallel unit cell capacitors, each with value 

/ 2C . The voltage nV  is at the node connecting the two unit cells. As in figure 2, a wave ( )a x  
propagates to the right. The characteristic impedance of the transmission line is 0 /n nZ V I= . 

The derivation of 0Z  is thus: 
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To proceed we note that ( ) ( ) ( )sin 2sin 2 cos 2k N k N k N= , so that 
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where we’ve used the dispersion relation (3) to simplify the final result. At low frequencies 
( )cω ω  0 /Z L C≈ , but 0Z →∞  as cω ω→ . 
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CUTOFF FREQUENCY 

Now to discuss the significance of the cutoff frequency cω . Consider the phase delay expression 
(4).  As cω ω→  from below, the phase delay φ π∆ → , and ( )cφ ω π∆ = , so at cω  the voltage at 
each node is 180° out of phase with the voltages at the two adjacent nodes. What happens at 
frequencies cω ω> ? In this case the argument of the arcsine in (4) is greater than 1, so the result 
must be a complex number. We can extend the dispersion relation for frequencies above cutoff 
by demanding that: (1) ω is real, and (2) the dispersion relation is continuous at cω ω= . Here is 
the derivation, starting with (3): 
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This result leads to the following expression for the voltage as a function of position on the line 
for a “right-going wave” 
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and we see that beyond cutoff frequency there is no wave propagation, but rather the voltage 
phasor changes sign from node to node and decays geometrically with distance down the line. 
We chose ( )A jB−  in the derivation of (7) to ensure the geometric decay of V with distance, 
rather than its growth. 
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The characteristic impedance beyond cutoff frequency can be derived almost immediately from 
equation (6) and is clearly imaginary. We must be careful to choose the proper sign of j in the 
result; this is done by considering the value of ( )sin k N  in the derivation of (6), given our result 
(7). The value of 0Z  beyond cutoff is thus 
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Again, no wave propagation is possible beyond cutoff frequency because the characteristic 
impedance is imaginary. The impedance beyond cutoff is capacitive; this should also be 
apparent if you consider the unit cell in figure 1 — clearly at very high frequencies the current 
entering the unit cell will flow through the nearest parallel capacitor (with value C/2).  

PROPAGATION ON THE LINE AND REFLECTIONS AT TERMINATIONS 

Armed with the dispersion relations (3) and (8) and the characteristic impedance (6) and (9), we 
are ready to consider the propagation of signals on the transmission line and their reflections 
from terminations. We know from our reading of General Appendix A that the voltage reflection 
coefficient Γ from a terminator with impedance Z is given by 

 0
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Z Z
Z Z
−
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+

 (10) 
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Z
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Z Z
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The apparatus for this experiment allows you to adjust the termination impedances at both ends 
of the line. From the discussion in General Appendix A we know that the terminated transmission 
line will be an efficient cavity resonator if the terminations have 1Γ  .  

Consider the time domain behavior of the terminated line in response to a step in the input 
voltage (a diagram of the configuration for this analysis is shown in figure 5). By applying a low-
frequency square-wave input using the signal generator, a series of independent voltage steps are 
injected onto the transmission line so that its propagation properties and the terminators’ 
refection properties may be studied. 
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Figure 5: The transmission line is terminated at each end with an adjustable impedance, ZL on the 
left (source) end and ZR on the right end. The signal generator acts as an ideal voltage source in 
series with a 50Ω resistor, RS (which is much smaller than the characteristic impedance Z0). 
Applying steady sinusoidal signals of various frequencies can excite the many resonances of the 
line; applying a low-frequency square wave introduces a series of nearly independent voltage step 
inputs whose propagation down the line and reflections from the terminators may be studied. 

Assume that the signal generator in figure 5 is used to inject a single voltage step at time 0t = ; 
the voltage step is from an initial value of 1− V to a final value of 1+ V at the terminals of the 
signal generator. Assume that ZL has been set to the value /L C , which is very nearly equal to 
Z0 for frequencies below the cutoff frequency, cω . Since ZL and Z0 form a voltage divider (with 

0LZ Z≅ ), the voltage step applied to the transmission line is nominally from 1/ 2− V to 1/ 2+ V, 
and it is this smaller step which introduces waves at the left end of the line which then propagate 
toward the termination ZR. 

 

Figure 6: A plot of the step response of the transmission line. The dark line is the response at the 
left end of the line immediately following a step input by the signal generator (figure 5); the gray 
line is the response 5 unit cells down the line as the step propagates by that position. As mentioned 
in the text, the ripples in the response waveforms are caused by the varying characteristic 
impedance with frequency, 0 ( )Z ω . The response is less sharp at positions further down the line 
because the phase velocity is slower for the higher-frequency components of the step. The time 
axis is in units of the low-frequency propagation time delay/cell, equations (4) and (5). 

Figure 6 shows the results for the voltage waveforms at the input to the transmission line and at a 
position 5 units cells down the line. The Fourier transform of a voltage step consists of a 

Signal Generator

50SR = Ω

0ZLZ

Transmission Line

RZ
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continuously infinite set of sine waveforms, all passing through 0 at time 0t = . The amplitudes 
of the sines are inversely proportional to their frequencies, so all of these waveforms have the 
same slope ( / )dV dt  at 0t =  (these slopes all add to create the voltage discontinuity represented 
by the step). If our experimental system is linear, then the evolution of each of these individual 
sines is independent of all the others; at any point on the line at any later time we can just 
integrate the instantaneous voltages of all the evolved waves (each at a different frequency) to 
determine the voltage at that point due to the propagation of the original step input. This process 
seems pretty complicated (and it can be!), but luckily we can use a tool like Mathematica® to do 
the tedious algebra and numerical integration. Because Z0 varies with frequency (becoming 
capacitive above cω ), the voltage divider formed by ZL and Z0 changes the relative amplitudes 
and phases of the various sines making up the original voltage step. As a result, the waveform at 
the input to the transmission line is not a perfectly-sharp step, but has ripples, as shown in figure 
6. Each of the various waves then propagates down the line at its own phase velocity. The 
dispersion in phase velocities delays the higher-frequency components more than the low 
frequencies, so the step becomes ever more spread-out as it propagates down the line (figure 6).  

Note that until the signal has had time to propagate down the line to the right-hand termination 
and back again, the transmission line behaves as though it extends to infinity, because there can 
be no reflected wave to modify the response. Now consider the effect of an open or of a shorted 
termination at the right-hand end. The open termination has 1Γ = + , so the reflected step has the 
same sign as the incoming step. The shorted termination has 1Γ = − , so it inverts the incoming 
step. The resulting waveforms are shown in figure 7. 

 

Figure 7: arrival of a reflection from the right-hand end of the line. Both plots show the waveform 
at the input end of the transmission line: the dark line is the response with the right-hand end 
shorted ( 1Γ = − ), so the reflection is inverted; the gray line is the response with the right-hand 
end open ( 1Γ = + ), so the reflection reinforces the original step. The length of the line is 10 unit 
cells, so the reflection arrives 20 time units after the initial stimulus. The source end of the line is 
properly terminated, so no further reflection takes place at that end. The final, equilibrium voltage 
on the line ( t → ∞ ) is 0 for the shorted case and 1 for the open case (signal generator output = −1 
to +1). 
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STEADY-STATE RESPONSE AND RESONANCES 

General Appendix A provides a brief introduction to the topic of cavity resonance and derives the 
conditions on the wave number (k) for resonance to occur, depending on the character of the 
cavity terminations. These conditions are summarized here: 

 Same termination at both ends (both shorted, both open): 

 mk m mπ= × ∈  (11) 

 Opposite terminations at the ends (one shorted, one open): 

 ( )1
2mk m mπ= − × ∈  (12) 

where, as in General Appendix A, mk  is the total phase along the line for the m-th resonance (or, 
equivalently, the line is taken to have unit length, and mk  is the wave number). So for the same 
termination at both ends, at a resonance the transmission line is an even number of ¼ 
wavelengths long; if the terminations are different, then there are an odd number of ¼ 
wavelengths at resonance. This condition ensures that the reflected wave, once it has been 
reflected by both ends of the line, is again in phase with the original wave. 

There is another interesting interpretation of these resonance conditions: if the far end of the 
transmission line is shorted, say, then whenever the line length is an even number of ¼ 
wavelengths the line presents a short circuit to the source driving it; it presents an open circuit 
whenever the length is an odd number of ¼ wavelengths. These results would be the other way 
around if the far end of the line is open-circuited. 

For a given configuration of end terminations, the number of distinct resonances is the same as 
the total number N of unit cells making up the line. This result is relatively easy to derive and is 
left to the problems. This result also follows by considering the number of dynamical degrees of 
freedom on the transmission line. There are N degrees of freedom, one for each unit cell (the 
instantaneous dynamical state of a cell could be specified, for example, by specifying the current 
flowing around the loop formed by the inductor and the two capacitors of the cell and its time 
derivative [see figure 1]). As you will learn in your advanced classical mechanics course, the 
number of normal modes of a dynamical system is the same as its number of degrees of freedom; 
as in other similar systems, its normal modes are just the resonant modes. 
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PRELAB PROBLEMS 

1. The phase velocity is ( ) /v kφ ω ω= . Use the dispersion relation (3) to show that: 

 
( )
( ) 2

c

c

v

v
φ

φ

ω ω π
ω
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2. Show that if the total number of unit cells is N, then this is also the number of discrete 
resonant frequencies of a cavity constructed from the transmission line, as stated in the 
discussion following equation (12). Consider both end termination cases, equations (11) and 
(12). Hint: each resonant frequency must have cω ω≤ , so that ( )sin / 2 1k N ≤  (equation (3)). 

3. If 5.0mH and 1.0nFL C= = , then what are 0Z , cω , and 2ccf ω π= ? What would be the 

low-frequency ( cω ω ) phase velocity in unit cells/sec? 

4. Given the results of the previous problem, and if the transmission line has 10 unit cells 
( 10N = ), what should be the lowest resonant frequency for each of the following 
termination conditions: 

a. Both ends shorted 
b. Source end shorted, far end open 

Sketch the amplitude v. position, ( )V x , at that resonant frequency for each of the above 
cases. 
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PROCEDURE 

 

Figure 8: The lumped-element transmission line apparatus consists of 10N =  unit cells joined as 
shown. Two variable resistors, RL on the left (source) end and RR on the right end, permit 
adjustment of the reflection coefficients of the line terminations. A switch on the right end allows 
an additional selection of shorted or open termination at that end. The signal generator is 
connected to the BNC connector on the left end of the line; it may be isolated from the circuit 
using the other switch so that the resistor values may be measured without damaging an 
ohmmeter. 5.0 mHL = , 1.0 nFC = , RL and RR are adjustable 0–20 kΩ. Once the signal generator 
is attached, the bottom conductor will be connected to ground, as shown. 

 

Figure 9: The setup showing connection of the signal generator and computer data acquisition 
(DAQ) hardware. Not shown is the shorting jumper wire used to short the resistance of RL (figure 
8) during steady-state cavity resonance measurements. Computer data acquisition and control of 
the experiment is similar to that of Experiment 2. The AI 1 signal lead (+) may be connected to the 
various nodes joining unit cells; the (–) input should be connected to the common ground 
conductor. 
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C CCC2
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Ensure that the apparatus has been assembled as in figures 8 and 9. Familiarize yourself with the 
delay line assembly and its switches and variable resistors. The investigations to be completed 
during the experiment are: 

1. Investigate the propagation and reflection of a step input. 
2. Determine the characteristic impedance (in the low-frequency limit). 
3. Set-up and measure the lowest resonant frequency for the shorted–open line. 
4. Examine the shape of the wave on the line at this resonant frequency. 
5. Measure the detailed frequency response of this cavity resonator over a wide range of 

frequencies. Determine the cutoff frequency. 
6. Investigate the behavior of the transmission line at frequencies beyond the cutoff 

frequency. 
7. Find the self-resonance frequency of the inductors used in the transmission line. 
8. (optional) Measure the frequency response at node 9 of the shorted–shorted 

configuration. 

What follow are additional notes and guidance for completing these investigations. 

Use the Transient Response program and input a low-frequency (~200 Hz?) square-wave to 
investigate the propagation properties of the transmission line and the reflections produced by 
various settings of the termination impedances. Examine the signal at the left end of the 
transmission line (node 0). With the right termination set to Short and then Open, compare the 
signal with that predicted by the theory (figure 7). 

Proper adjustment of the source termination (RL) should result in only a single refection; if it is 
not adjusted to /L C , you should see several reflections of decreasing amplitude, each arriving 
after another round-trip delay of the transmission line. When RL is set properly, the initial step 
amplitude at node 0 should also have approximately ½ the amplitude of the square-wave input 
step (AI 0). 

How is the round-trip delay time for the reflection related to the lowest resonant frequency (both 
ends shorted)? What is the low-frequency delay time per unit cell? How does this compare to the 
low-frequency phase velocity you calculated (problem 3)?  

Next set the right-end switch to Terminated and adjust RR until the reflection vanishes, properly 
terminating both ends of the line. Note the shape of the signal at node 0 and its relation to the 
input square-wave from the signal generator. Does its amplitude match the theory? Look at the 
signal at node 5 and compare it to figure 6.  

Turn the left switch to Off, disconnecting the signal generator, before you measure RL and RR 
using an ohmmeter. How does the 50Ω output impedance of the signal generator affect the value 
of RL when properly set to eliminate reflections? 

For the cavity frequency response investigations, short RL using a jumper wire so that the signal 
generator and AI 0 are connected directly to the input of the transmission line. Connect AI 1 at 
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the other end of the line with the termination switch to Open. Use a small-amplitude sine-wave 
input from the signal generator to find the first resonant frequency for this configuration 
(shorted–open). Make sure your input signal amplitude is not set too high! The phase at the 
lowest resonance should be −90°, and the gain is (4 / )Qπ  (General Appendix A equations (22) 
and (19), with 2nk π=  and 1x = ). 

Use the Frequency Response program to accurately find the lowest resonant frequency. Note the 
gain and phase at the resonance (this would be ( )1 (0)V V  using the notation of General 
Appendix A). Record the gain and phase at each of the nodes 1 to 10 for later analysis, so that 
you can compare to General Appendix A equation (22) for ( ) (0)V x V  at a resonance 
(remember, x goes from 0 at left end to 1 at the right end of the line, so x n N=  for node n). 

Since the right end of the line is an anti-node for all resonances in the shorted–open 
configuration, you should connect AI 1 at that location for your frequency sweeps (up to and 
including the cutoff frequency). 

At some frequency slightly above cutoff, you should record the gain and phase for each of the 
first few nodes to compare with the theory (equation (8)). Frequency sweeps above cutoff should 
be done with AI 1 connected at node 1. Find the inductor self-resonance frequency by looking 
for a sharp null in the output at node 1 at a frequency a few times higher than the cutoff 
frequency (refer to figure 12 in Appendix A of these notes, pg 14–16). The phase is 180° below 
this frequency and 0° above it. 

DATA ANALYSIS 

Do the step-input observations match the theory presented on pages 14–6 to 14–8? Compare the 
low-frequency phase velocity to LCω .  

Do the gain and phase v. position data (procedure step 4) match the theory (General Appendix A 
equation (22))? 

Assume the wave number for each of the shorted–open resonances is that given in equation (12). 
Calculate ( )sin 2m mx k N≡  for each of the resonances and fit this modified dispersion relation 

v. mm xω  using your observed resonant frequencies. According to the theory (equation (3)), 
should the fit be a strict proportion ( c mm xω ω= )? What does this fit give for the cutoff 
frequency, cω ? Is there a pattern to the residuals? 

Transform your data to ( ) ( )2 21/ v. 1/m mxω  and try a linear fit, that is: ( ) ( )2 21/ = 1/m ma b xω + . 
Is the fit better? Compare 2 LCω  to 1/2b−  and your observed inductor self-resonance frequency, 

sω , to 1/2a− . For an extension to the theory which includes sω  see Appendix A of this 
experiment. 
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APPENDIX A:  EFFECTS OF INDUCTOR SELF-RESONANCE 

An inductor in the lumped-parameter transmission line is made by winding a long, thin wire into 
a tightly-wrapped coil and inserting it into a donut-shaped ferrite form. Because the many 
windings of the coil are very close to one another and are separated by only a thin layer of 
insulation, electric fields form between adjacent windings and attract charges in the wire. In 
other words, adjacent windings form little capacitors which provide an alternate path for the 
varying current flow through the wire. Consequently, the coil of wire has a capacitance which is 
situated in parallel with the inductance resulting from current flow which follows the turns in the 
coil. The equivalent circuit of the coil which includes this capacitance is shown in figure 10. 

 
Figure 10: The equivalent circuit of an inductor formed from a closely-packed coil of wire 
includes a parallel capacitance, shown here with value SC . The impedance of the coil is then the 
parallel combination of the two component impedances, j Lω and 1 Sj Cω . The parallel L and 

SC  form a “tank circuit.” 

The parallel combination of the inductor and capacitor has an equivalent impedance which 
becomes infinite at the self-resonance frequency of the coil, 1s SLCω = ; this impedance is: 
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So for frequencies sω ω<  the coil behaves as an inductor, but for frequencies sω ω>  it has a 
capacitive impedance. As seen in (13), coilZ →∞  at sω . To include this effect in the theory of 
the transmission line’s dispersion relation, we substitute coilZ   for j Lω  in the derivation leading 
to equation (3) on page 14–2: 
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Equation (14) is the new dispersion relation which includes the effects of inductor self-
resonance. Cutoff still occurs when the argument of the sine is / 2π ; the group velocity vanishes 
here, and k must become complex at higher frequencies. The cutoff frequency, however, is 
clearly different from that defined by the original dispersion relation (3). When the sine in (14) is 
1, the modified cutoff frequency is lower; see (15) and figure 11, below. 
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++
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Figure 11: A comparison of the dispersion relation (3) (dashed) with (14) (solid) for 20 SC C= × . 
The cutoff frequency cω is reduced by ~10% by the presence of SC . The wave number at cutoff is 
k Nπ=  for each form of the dispersion relation. 

The last expression in (15) shows that, again, cω  is just the resonant frequency of the L and total 
equivalent C in the circuit loop of a unit cell — the coil’s stray capacitance SC  is in parallel with 
the other capacitors, so its capacitance adds to their equivalent series combination, 4C . 

When cω ω> , the wave number k must be complex, as we found previously, so waves do not 
propagate on the line at frequencies above cutoff. For scω ω ω< <   the behavior is similar to that 
of equation (8), so there is a 180° phase shift from node to node, and the amplitude falls 
geometrically with node number: 
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 (16) 

From the above expression it is clear that 0nV =  at sω ω= , as mentioned before. This fact 
provides the most straightforward method to experimentally identify sω . For frequencies above 

sω , the above expression must be modified. Without proof, we state the behavior in (17). 
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 (17) 

Above sω  the phase shift is 0 (all nodes are in phase), and as ω  continues to increase, the 
attenuation per cell approaches a constant value, which is just the attenuation due to a capacitive 
voltage divider ladder consisting of capacitors SC  and C (figure 12). 

   

Figure 12: The attenuation of the input signal above cutoff frequency, including the effect of the 
inductor’s stray capacitance, SC . The vertical gridline is at sω ; the horizontal gridline at the 
capacitive voltage divider ratio given by the final expression in (17). 

 


