Appendix D:

The Wave Vector

In this appendix we briefly address the concept of the wave vector and its relationship to traveling waves in 2- and 3-dimensional space, but first let us start with a review of 1dimensional traveling waves.

1-dimensional traveling wave review

A real-valued, scalar, uniform, harmonic wave with angular frequency ω and wavelength λ traveling through a lossless, 1-dimensional medium may be represented by the real part of the complex function $\psi(x, t):{ }^{1}$

$$
\begin{equation*}
\psi(x, t)=\psi(0,0) \exp (i k x-i \omega t) \tag{D-1}
\end{equation*}
$$

where the complex phasor $\psi(0,0)$ determines the wave's overall amplitude as well as its phase ϕ_{0} at the origin $(x, t)=(0,0)$. The harmonic function's wave number k is determined by the wavelength λ :

$$
\begin{equation*}
k= \pm 2 \pi / \lambda \tag{D-2}
\end{equation*}
$$

The sign of k determines the wave's direction of propagation: $k>0$ for a wave traveling to the right (increasing x). The wave's instantaneous phase $\phi(x, t)$ at any position and time is

$$
\begin{equation*}
\phi(x, t)=\phi_{0}+(k x-\omega t) \tag{D-3}
\end{equation*}
$$

The wave number k is thus the spatial analog of angular frequency ω : with units of radians/distance, it equals the rate of change of the wave's phase with position (with time t held constant), i.e.

$$
\begin{equation*}
k=\frac{\partial \phi}{\partial x} ; \quad \omega=-\frac{\partial \phi}{\partial t} \tag{D-4}
\end{equation*}
$$

(note the minus sign in the differential expression for ω). If a point, originally at $\left(x=x_{0}, t=0\right)$, moves with the wave at velocity $v_{\phi}=\omega / k$, then the wave's phase at that point will remain constant:

$$
\phi\left(x_{0}+v_{\phi} t, t\right)=\phi_{0}+k\left(x_{0}+v_{\phi} t\right)-\omega t=\phi_{0}+k x_{0}
$$

The velocity v_{ϕ} is called the wave's phase velocity.

[^0]The function $\psi(x, t)$ is a solution of the 1-dimensional wave equation

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}-\frac{1}{v_{\phi}^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0 \tag{D-5}
\end{equation*}
$$

and the function $\Psi(x)=e^{i \omega t} \psi(x, t)=\psi(0,0) \exp (i k x)$ is a solution of the 1-dimensional Helmholtz equation

$$
\begin{equation*}
\frac{d^{2} \Psi}{d x^{2}}+k^{2} \Psi=0 \tag{D-6}
\end{equation*}
$$

The functions $\psi(x, t)$ and $\Psi(x)$ represent harmonic solutions to equations (D-5) and (D-6) because they have well-defined frequency ω and wave number k. Of course, there are an infinite number of other valid solutions to equations (D-5) and (D-6): the appropriate solution will depend on a particular problem's boundary value constraints and might be constructed from a linear superposition of harmonic solutions with various values for k (or ω) using Fourier analysis.

Waves in 2 and 3 dimensions

To extend the 1-dimensional harmonic wave $\psi(x, t)$ given by ($\mathrm{D}-1$) to a wave in multidimensional space, consider the expression (D-3) for the wave's phase ϕ. Using Cartesian coordinates so that the position vector $\vec{r}=x \hat{x}+y \hat{y}+z \hat{z}$, we could simply add a linear phase term for each coordinate:

$$
\begin{gather*}
\phi(\vec{r}, t)=\phi_{0}+\left(k_{x} x+k_{y} y+k_{z} z-\omega t\right)=\phi_{0}+(\vec{k} \cdot \vec{r}-\omega t) \tag{D-7}\\
\vec{k} \equiv k_{x} \hat{x}+k_{y} \hat{y}+k_{z} \hat{z}
\end{gather*}
$$

Thus the equivalent expression in two or more spatial dimensions for the uniform, harmonic wave (D-1) becomes

$$
\begin{equation*}
\psi(\vec{r}, t)=\psi(\overrightarrow{0}, 0) \exp (i \vec{k} \cdot \vec{r}-i \omega t) \tag{D-8}
\end{equation*}
$$

where, again, $\psi(\overrightarrow{0}, 0)$ is a complex phasor which determines the amplitude and phase offset of $\psi(\vec{r}, t)$. The vector \vec{k} is called the wave vector, the multi-dimensional analog of the wave number k in (D-1).

From the phase expression (D-7), \vec{k} is evidently the position gradient of the phase, which turns out to be a good, general definition of the wave vector:

$$
\begin{equation*}
\vec{k}=\nabla \phi(\vec{r}, t) \tag{D-9}
\end{equation*}
$$

Equation (D-9) is obviously simply the generalization of the expression for k in (D-4) to multi-dimensional spaces. If the wave vector \vec{k} is constant and uniform throughout 3dimensional space, then $\psi(\vec{r}, t)$ becomes a plane wave: so named because its instantaneous loci of uniform phase, which by equation (D-9) must be everywhere perpendicular to \vec{k}, form
a set of parallel planes; in 2-space the analogous loci comprise the set of lines everywhere perpendicular to \vec{k} (see Figure D-1).

Figure D-1: (Left) a transverse plane wave propagating along a surface in the direction given by its wave vector \vec{k}. Note that the magnitudes of the wave vector's components give the rate of change of the wave's phase along their respective directions. (Right) a circular wave propagating outward. A selection of wave vectors is shown; each vector is perpendicular to the surface of constant phase at its location (in this case, a circle centered on the source).

Because the wave vector is the position gradient of the phase of a wave, its dot product with a unit vector gives the rate of change of the phase along that unit vector's direction (in radians/length). This is illustrated in the left-hand graphic in Figure D-1 for the two unit vectors \hat{x} and \hat{y}. Generally, the wave vector varies from place to place, as shown in the right-hand graphic in Figure D-1; we then refer to the vector field $\vec{k}(\vec{r})$. Only if the wave vector \vec{k} is uniform throughout space do we get a plane wave, equation (D-8).

The phase velocity of a plane wave (equation (D-8), with uniform \vec{k}) is parallel to \vec{k} and is again given by $v_{\phi}=\omega / k$

$$
\begin{equation*}
\vec{v}_{\phi}=\frac{\omega}{k} \hat{k} \tag{D-10}
\end{equation*}
$$

The multi-dimensional wave equation satisfied by $\psi(\vec{r}, t)$ is (we assume the medium is isotropic)

$$
\begin{gather*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}-\frac{1}{v_{\phi}^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0 \\
\text { or } \tag{D-11}\\
\nabla^{2} \psi-\frac{1}{v_{\phi}^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0
\end{gather*}
$$

The associated Helmholtz equation is, naturally,

$$
\begin{equation*}
\nabla^{2} \Psi+k^{2} \Psi=0 \tag{D-12}
\end{equation*}
$$

As for the 1-D case, general solutions of either of these differential equations may be constructed from Fourier sums or integrals of plane-wave solutions with various values of \vec{k}. Such constructions are appropriate if the boundary conditions are planar (3-D case) or defined along straight lines (2-D case). Such boundary value problems over finite volumes will restrict the choices of wave vectors \vec{k} which will satisfy them. The acceptable values of \vec{k} become a set of eigenvalues for a particular boundary value problem, and the associated functions $\psi_{\vec{k}}(\vec{r}, t)$ may be used to construct the system's normal modes.

Relation to standing waves in a cavity

Figure D-2: Two views of a standing wave mode in a rectangular resonant cavity with "free" (Neumann) boundary conditions. The nodal lines of the mode are shown (dashed) in the left graphic; the arrows in each graphic represent \hat{x} and \hat{y} unit vectors. In this example such solutions may be constructed by adding a symmetric set of plane waves all with the same wave number $|\vec{k}|$ as described in the text and shown in Figure D-3.

The boundary conditions for a resonant cavity will usually demand that the Helmholtz equation's wave solutions form standing waves rather than a single travelling wave with a definite direction of propagation; Figure D-2 provides an example of a standing wave solution in a rectangular cavity such as that used in Experiment 15.

In the case of the rectangular cavity shown in Figure D-2, standing waves with the proper symmetries and boundary values may be synthesized by adding pairs of oppositely-directed travelling waves, all with a common wave number $k=|\vec{k}|$, as shown in Figure D-3 at right. For the solution shown in Figure D-2, each plane wave must have $\left|k_{x}\right|=2 \pi / l_{x}$ and $\left|k_{y}\right|=\pi / l_{y}$, where l_{x} and l_{y} are the lengths of the horizontal and vertical sides of the cavity, respectively. Additionally, all four plane waves must have phase $\phi=0$ at the lower-left corner of the cavity for the resulting standing wave to satisfy the cavity's boundary

Figure D-3: Wave vectors of the four traveling waves whose sum provides the standing wave solution shown in Figure D-2.
conditions. The Experiment 15 notes cover this situation more thoroughly.
The symmetries of a particular boundary value problem involving the wave equation or its related Helmholtz equation may point to a different choice for the set of elementary solutions $\psi(\vec{r}, t)$ of the differential equation, rather than using plane waves. For example, a 2dimensional system with circular symmetry is usually solved in the most straightforward manner by choosing circularly-symmetric solutions whose radial variation is given by an appropriate member of the family of Bessel and related functions. For any such function representing a travelling wave with well-defined frequency ω (a harmonic function), however, the wave vector \vec{k} at any position \vec{r} is still given by the gradient of the function's phase with \vec{r} (equation (D-9) and the right-hand graphic in Figure D-1).

Circularly-symmetric cavities resonate with standing waves displaying radial + circular nodal patterns as shown in Figure D-4. Unlike the rectangular cavity solutions, however, these patterns cannot be generated from a finite sum of plane waves. The most straightforward analytic (closed-form) expression for the standing wave solution is as the product of a function for the radial variation (a Bessel function) and the azimuthal variation (a sinusoid). For the standing wave shown in Figure D-4, the solution of equation (D-12) turns out to be:

$$
\begin{equation*}
\Psi(r, \theta)=J_{2}(k r) \cos (4 \pi \theta) \tag{D-13}
\end{equation*}
$$

where J_{2} is the $2^{\text {nd }}$-order Bessel function of the first kind, and the wave number k is such that $J_{2}(k a)$ is the second zero of J_{2} with $a=$ the circular cavity's radius, or $k \approx 8.41724 / a$.

Figure D-4: Views of a particular standing wave mode in a circular, 2-D membrane with a "fixed" (Dirichlet) boundary condition, such as a drumhead. The nodal lines of the mode are shown (dashed) in the left graphic. The right-hand images show very exaggerated surface displacements of the membrane, seen from above and below.

[^0]: ${ }^{1}$ In this appendix we use the physicists' sign convention for the exponential argument: $i(k x-\omega t)$, rather than the electrical engineering convention $j(\omega t-k x)$ used in General Appendix A and Experiment 14.

