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USEFUL  T ABLES AND FORMULAS  
(See the referred chapters of the text for details.) 

Uncertainty propagation 
In the following table, “x” and “z” are used where one should really refer to estimates of 

μx  and μz . The derivative f ′(x) is evaluated at the estimated value of μx . Symbols “a” and 
“b” refer to real-valued parameters which do not have an associated uncertainty.  More 
complete information and derivations are found in the section Propagation of uncertainties in 
Chapter 2.  

Table I: Naïve uncertainty propagation 
Common functions of a single uncertain variable x ± σx 
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Uncertainty propagation for a function of several variables 
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Common functions of two independent, uncertain variables x ± σx and y ± σy 
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Point estimates 
See Point estimation in Chapter 2 and Weighted mean of several measurements in Chapter 3. 

Point estimate from N samples 
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Normal distribution 
See the section Noise and the normal distribution in Chapter 1. 

The normal (Gaussian) distribution 

2

22
1 ( )( ) exp

22

xp x 


 − −
=  

  
 

Table II 
Properties of the normal distribution 

Total probability within ±1σ of the mean: 68.3% 

Total probability within ±2σ of the mean: 95.5% 

Total probability beyond 3σ from the mean: 0.27% 

Range around mean for 50% probability: ±0.67σ 

½ maximum PDF locations: ±1.18σ 

Probability between ½ maximum points: 76.1% 

Table III 
Even moments about the mean of the normal distribution 

(odd moments all vanish by symmetry) 
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χ2 calculations 
See Chapter 1, The χ2 distribution, and Chapter 4. 

 N data points yi , 1-parameter model of a point value: y = Y(a) 
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Data point variances for χ2 
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Reduced χ2 with (N – M) degrees of freedom 
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Table IV 
Properties of the reduced χ2 distribution 

Total probability for 2
2 1 1  > +



 : < 16% 

Total probability for 2
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 Covariances of the fit parameter estimates from χ2 minimization  
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Pearson’s χ2 test of a distribution 
See Testing for normally-distributed data scatter in Chapter 3. 
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Q: number of quantiles, N: number of data points, Ni: the number falling in the ith quantile. 

 The lower boundary of the first quantile is −∞; the Qth quantile has an upper boundary of 
+∞. For a Gaussian with mean 0 and variance 1 the upper boundary of the ith quantile is: 
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Table V 
Quantile boundaries (only values above the mean shown) 

Q yi     limitχ2 
4 0.6745 

    
3.84 

6 0.4307 0.9674 
   

7.81 
8 0.3186 0.6745 1.1503 

  
11.1 

10 0.2533 0.5244 0.8416 1.2816 
 

14.1 
12 0.2104 0.4307 0.6745 0.9674 1.3830 16.9 

The boundaries are symmetric about the mean and include the mean (for even 
Q). For a general Gaussian, multiply the boundary values by the standard 
deviation and add the mean. The limit χ2 is for a p-value of 5%.  
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PREFACE  

This text is intended to be a short introduction and ready reference to basic techniques and 
issues of data analysis important for the beginning physical scientist to understand. Its 
presentation has developed from the author’s more than twenty years teaching this subject to 
sophomore-level physics majors at Caltech, most of whom intended to go on to doctoral 
study of experimental physics or applied physics. The physics laboratory course sequence at 
Caltech has evolved through the years to become an important hurdle for our undergraduates, 
introducing them to the rigors and rewards of experimental research as a professional 
activity. As modern research equipment has grown in precision and speed, so has grown the 
need for physics students to have some familiarity with an ever more sophisticated repertoire 
of data analysis techniques to call on. This text is intended to provide key elements of the 
foundation upon which understanding of these techniques may be built. 

Theory and experiment 
One of the most prevalent characteristics of human thought is our almost irresistible 

tendency to create generalizations and abstractions about the world and our experiences of 
it. *  Even though any particular physical object or specific sequence of actual events is 
unique, we continually and often unconsciously sift through our experiences and create 
mental models of those seemingly ideal, underlying characteristics various objects or 
sequences of actions appear to share. These apparent regularities in our day-to-day 
experiences form the basis of what we conclude are the underlying rules, or “laws,” 
governing the natures and behaviors of the myriad things making up the physical world, and 
each of us consciously or unconsciously calls on these abstract mental models to decide how 
to act and how to react as we live our daily lives. As our experiences accumulate, we (albeit 
often reluctantly) refine our many mental models to improve our ability to anticipate future 
events and to better plan our own actions. 

Through our gift of language we can share our findings with others. Joint efforts can then 
further refine and expand as well as record representations of these abstract mental models. 
Perhaps the ultimate expression of humanity’s creativity in this regard (besides language 
itself) is the development of the abstract studies of quantity and mathematics. The concept of 
the number two abstracted from observations of pairs of objects or events or the concept of 
addition abstracted from aggregations of originally separate collections of things provide 
fundamental examples. Our ability to create mental models extends further, however, in a 
way possibly unique to humans: we can ponder these abstract concepts and invent deeper 
abstractions which are even more removed from direct experience. Confining ourselves to 
the realm of mathematics, the ideas of real and complex numbers, of a function, of spaces 
with more than three dimensions, and of infinity provide a few examples.  

                                                 
* This statement itself serves as a typical example. 
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Theories of physics are expressed mathematically and thus relate two or more quantities 
abstracted from observed behaviors of things. As with all abstract mental models, physical 
theories are idealizations of what we observe to happen during any particular actual sequence 
of events in the world. The abstract entities representing the primitive atoms of a theory are, 
naturally, mental constructs of the theorist. How these abstractions and their mathematical 
relationships correspond to actually experienced sequences of events may be more or less 
ambiguous or idealized. Consequently, theories provide approximations of what behavior 
may be observed in a specific experiment or situation encountered in the real world (although 
they can be very precise).  

Thus, physical theories express abstract mathematical relationships among numerical 
quantities with physical meaning (the quantities correspond to observable properties and 
behaviors of things in the world, such as lengths, weights, rates, etc.). Included in most 
fundamental physical theories are mathematical expressions which contain free parameters: 
universal numerical quantities with no a priori, purely theoretical method of determining 
their values. Examples of such fundamental constants of nature include the electron’s charge 
and rest mass or the values of Planck’s constant and the gravitational constant. The only way 
to determine these quantities is to conduct experiments and to observe what happens in the 
real world, and then choose values for them which best model the behaviors of things 
observed during actual specific events.*  

These facts demand that as experimenters we must make measurements when attempting to 
evaluate a physical theory. But imperfect calibration and the finite numerical precision of the 
instruments we use, along with the lack of exact repeatability of our most precise 
observations, indicate that each of our observations always has, naturally, some error — our 
measurements are wrong. On the other hand, because most theories involve idealizations and 
simplifications of actual objects and specific situations (“Consider a spherical cow in a 
vacuum…”), their descriptions and predictions are only approximate — the theory is also 
wrong. So how can we make any progress? How can we have confidence in the accuracy of 
anything we conclude about the world? The following pages introduce elementary methods 
to begin to answer these questions. 

Acknowledgements 
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*  Assuming, of course, that a particular theory does provide a useful abstract mental model of the world, and 
thus its free parameters really do have useful meanings. 
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Chapter 1  
Random variables and their statistical description 

RANDOM VARI AB LES,  PROBABILIT Y  DENSITY,  EXPECT ED VALUE 

Noise and the problem of repeatability 
Consider a common situation encountered when attempting to accurately measure the value 

of an observed quantity such as a voltage or a length: attempts to repeat the measurement, if 
they are precise enough, will result in a set of various different values for it: the measurement 
exhibits seemingly random variations from trial (observation) to trial. For example, the 
observations may consist of the readings of a voltmeter repeated at one-second intervals or 
may be the readings recorded during repeated attempts to measure the length of a resonant 
cavity using a precision caliper. In the first case, the voltage reading variations may be 
caused by many tiny, independent (not causally related) sources of electrical fluctuations 
within the voltmeter itself, the experimental apparatus, and the connecting wiring. In the 
second case, the length measurements may vary because the experimenter places the calipers 
in slightly different locations each time, or looks at the scale from slightly varying angles, or 
uses slightly varying pressures when fitting the caliper jaws to the cavity. We lump the 
resulting scatter in our measured values into the general category of noise in our 
measurement process. Figure 1-1 illustrates the problem. 

 
Figure 1-1: an illustration of scatter in the repeated measurement of an experimental quantity. As 
the number of measurements increases, the relative frequencies of observed values, indicated by 
the histogram bars, evidently converge to a smooth curve, centered on what could be interpreted 
as the underlying, “true” value to be measured (indicated by the horizontal line in each scatter 
plot). 
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In cases such as these we may believe that there is really a single, “true” voltage or length 
that could be measured if only our instrumentation and experimental techniques were 
absolutely precise, accurate, and free of noise. Clearly, because of the scatter in the measured 
data, each individual measurement is then in error to some degree. We further may have 
reason to believe that, because we are careful and unbiased, the errors in the individual 
measurements are completely unrelated to each other in direction and exact magnitude. We 
may then expect that the various measurements generally fall within some more or less well-
defined range centered near the underlying, “true” value, as illustrated in Figure 1-1. What 
we want is some reasonable way to estimate the underlying value and to estimate how 
uncertain our estimate of that value may be. This chapter provides an overview of a basic 
mathematical framework which will allow us to develop such a method.  

The next section describes the properties of an abstract mathematical model of a generator 
of a set of noisy measurements: a random variable. Some of these properties may seem 
somewhat abstruse, but they actually provide the axiomatic foundation for the mathematics 
we will use throughout this text. We may not spend a lot of words explaining why we need 
these properties, and few theorems will be explicitly derived from them in this text, but their 
justifications will be found in any thorough statistics reference. 

Random variables and processes, statistical ensembles, probability density 
Assume that we make N measurements of an experimental quantity x, and noise in the 

measurement process introduces random errors in the measurements. We obtain the set of 
various measurement values {xi}, with the integer i ∈ {1…N}. To proceed with the 
mathematical analysis of our data, we now assume that we can reasonably model these 
values as samples of a continuous random variable x. A “random variable” is not really a 
variable at all. It is a generalized type of function (also called a distribution). For our present 
purpose, think of the random variable x as a function taking a single integer i as its argument 
and returning the ith sample value xi = x (i).* Conceptually, the infinite sequence of values 
{xi} for i ∈ {1…∞} is called a random process associated with x.† Sometimes the random 
variable might be considered to be a function of a continuous argument such as time t. In this 
case, xi = x (t i), where t i is the time at which the ith sample is acquired. In this case x (t) for 
all t becomes a random process associated with the random variable x. 

This physically-nonexistent, abstract, infinite sequence of measurements {xi} for 
i ∈ {1…∞} is meant to characterize the random variable x in the following sense: we 
assume that if we were to continue taking measurements forever, holding all experimental 

                                                 
* x is a continuous random variable because these return values are real numbers. A discrete random variable 
would return values from some countable set such as the set of nonnegative integers. 
† Or we could consider our data set to have come from some “eternal” random process which extends infinitely 
into the past as well, in which case the index i could be any integer, i ∈ {−∞…∞}. In either case, such infinite 
sequences are abstract concepts, because in reality we have, of course, only our finite set of N measurements. 
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conditions constant, and that we and our equipment don’t age, and that we are just as careful 
with every measurement, etc., etc., etc., then we could, in principle, generate all of the {xi}. 
Our first big assumption (or axiom) is that making ever finer histograms of the relative 
frequencies of the values of the elements of this sequence would in this infinite limit yield a 
smooth curve as shown in Figure 1-1.  

Our experience tells us that the noise in our measurements makes each result unpredictable 
(varying randomly), so we may expect that this particular infinite sequence of values {xi} is 
not the only one which could have been generated by the random variable x. A vast multitude 
of other infinite sequences {x′i}, {x″i}, etc., might have been generated, corresponding to 
different sets of experimental results consistent with our actual measurements. Such an 
assemblage of all of the possible sequences (processes) which could have been generated by 
a random variable is called a statistical ensemble of sequences. Our second big assumption is 
that the histogram of relative frequencies of values generated from each of these different 
possible sequences converges to the same result, and therefore the limiting histogram of any 
one particular sequence of measurements is a defining characteristic of the random variable. 

Now comes our final, most subtle assumption about the nature of the random variable x 
characterizing the noise in our measurements. Consider the set obtained by selecting the mth 
element of each of the various possible sequences: {xm, x′m , x″m , …} (for example, m = 1, 
corresponding to the first measurement value in each sequence). * Our final and biggest 
assumption is that the histogram of relative frequencies of values in this ensemble of the 
possible mth measurements converges to the same histogram as do the set of values in any 
particular sequence of multiple measurements. Thus this single, limiting histogram is truly a 
fundamental characteristic of the random number x.† 

The characteristic limiting histogram of the continuous random variable x (Figure 1-1) 
takes the form of a curve px(x), called the probability density function (or PDF) of the 
random variable x. By probability density, we mean that dP = px(ξ) dξ  is the infinitesimal 
fraction of the members of either a process {xi} or an ensemble of measurements {xm, x′m , 
x″m , …} whose values fall within the interval dξ  around some particular value ξ . The total 
fraction of an infinite set’s members whose values fall within some interval a < ξ < b  would 
be obtained by integrating px(ξ) dξ  over that interval; the PDF is normalized so that 
∫−∞

∞ px(ξ) dξ  = 1.   

We define the probability P (a < xj < b) of obtaining a value for the jth sample of the 
random variable x in the range a < xj < b  in terms of the PDF as: 

1.1  ( ) ( )
b

j xa
P a x b p dx x< < = ∫   Probability and the PDF 

                                                 
* Another example of a statistical ensemble. 
† This final assumption is a form of the ergodic hypothesis. It is a critically important foundation for the 
mathematical analysis of many random processes and systems. 
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with PDF normalization:  ( ) 1.xp dx x
∞

−∞
=∫  

We therefore use what may be called a “fractional” definition of probability: P (a < xj < b) 
is the fraction of the total number of members of the xj ensemble that have values between a 
and b. Although the presence of noise makes the actual value obtained in a particular 
experiment unpredictable, we nevertheless expect that should we carefully repeat the 
experiment many times, the observed fraction of the results for which a < xj < b  will 
approach P (a < xj < b) given in (1.1). This conclusion may also be considered to be a 
“relative frequency” definition of probability, since it also describes how frequently (on 
average) measurements are expected to fall in the specified range in the limit that the total 
number of samples becomes large. Finally, the probability (1.1) might be interpreted as 
describing the “odds” or “degree of rational belief” that a single experimental measurement 
of xj would yield a < xj < b , although one ought to consider whether such interpretations are 
really in any way substantially different from the fractional definition. 

Ensure that you thoroughly understand the motivation behind and possible limitations 
of this mathematical model we will use for the underlying “generator” of an 
experimental data set. The necessary inference is illustrated in Figure 1-1 on page 1: as 
shown by the histograms, the relative frequencies of the various data values seem to 
converge to a smooth curve as the number of measurements becomes large. The curve 
is then identified with the PDF of some random variable. This inference is not logically 
justifiable, because we will never acquire the infinite number of samples needed to prove 
that such a limiting PDF exists.  

Our experience, however, with the results of careful observations leads us to believe that 
this mental picture is nevertheless appropriate for modeling many experimental situations. As 
with any abstraction we may employ to characterize the physical world’s behavior, it must be 
remembered that our model is only an approximation based on an inference that in some 
cases may prove to be inadequate. 

Functions of a random variable; expected values; mean and variance 
With the above motivation and caveats always in the backs of our minds, let us then press 

on with our mathematical model of a noisy measurement process as that of taking samples of 
a random variable x with a well-defined PDF px . A function f (x) will take on random values 
when given a sequence of samples of the random variable x as arguments. The expected 
value of f is defined in terms of px  as: 

1.2 E[ ( )] ( ) ( )xf x f x p x dx
∞

−∞
≡ ∫   Expected Value 

Note that the x in the integrand is a variable of integration and not the random variable x. 
We’ll often make double use of a symbol in this manner, so stay alert. E[ f (x)] is a weighted 



  Physical Data Analysis 

5 
 

mean of f (x) over the possible values of the random variable x. Other names for the expected 
value are average value and mean value, and E[ f (x)] may also be denoted by symbols such 
as 〈 f (x)〉 , ( ),f x  or μf . Note that the expected value may not exist for some combinations of 
functions f and px , because the resulting integral (1.2) may not converge. Expected values are 
just numbers, not random distributions, so E[E[ f (x)]] = E[ f (x)].* The integral in (1.2) is 
linear in its integrand, so for numerical constants a and b: 

1.3 E[ ( ) ( )] E[ ( )] E[ ( )]a f x bg x a f x b g x+ = +   

Given a random variable x with distribution described by the PDF px , the expected value of 
x itself, E[x], is called the statistical or distribution mean of x and is symbolized by μx: 

1.4 ( )x xx p x dx
∞

−∞
≡ ∫   Distribution Mean 

This quantity is also called the first moment of the distribution described by px . Higher 
moments are given by the expectation values E[x2], E[x3], etc. Moments about the mean are 
also useful: E[x−μx], E[(x−μx)2], etc. The first moment about the mean identically 
vanishes by (1.2) and (1.3): E[x−μx] ≡ 0. 

The second moment about the mean of a random variable x is called the distribution 
variance and is quite important. It is conventionally given the symbol σ 2

x: 

1.5 2 22 2 2E[( ) ] ( ) ( ) E[ ]x x x x xx x p x dx x   
∞

−∞
≡ − = − = −∫   Variance 

The final expression in (1.5) comes from multiplying out (x−μx)2 and using the linearity 
relation (1.3). The positive square root of the variance is called the standard deviation, σx . 
The standard deviation, from (1.5), is the “root of the mean squared deviation,” or RMS 
deviation of a distribution about its mean. It is a common indicator of the size of the scatter 
in a measured quantity, as illustrated in Figure 1-2. 

PDF of a derived random variable 
We have considered how to determine the expected value of a function f (x) of some 

random variable x whose PDF px  is known, and we have used this method to define the mean 
and variance of x. Given a function f (x), we now wish to determine not only its expected 
value, but also the distribution (PDF) of its returned values. In other words, we define a new 
random variable y derived from x using the function y = f (x), and ask how its PDF py(y) 
may be determined from f (x) and px(x). 

By the definition of the PDF, the infinitesimal probability that the original random variable 
returns a value within dx of some chosen x is dP = px(x) dx . If f (x) has a unique inverse, so 
that y = f (x)→x = g (y), then dP may also be found in terms of y = f (x) using the chain rule: 

                                                 
* E[ f(x)] is an idempotent function, as are, for example, the absolute value of a real number or a projection 
operator acting on a quantum mechanical state vector.  
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  ( ) ( ( )) ( ) ( )x x ydP p x dx p g y g y dy p y dy′= = =  

The absolute value of the derivative dx/dy  = g′(y) is used so that we can always have dy > 0 
when dx > 0, and therefore py(y) > 0. Thus we have derived an expression for py(y) in terms 
of px(x), using g′(y) = 1/ f ′(x):  

  ( ) ( ( )) ( ) ( ( )) ( )y x xp y p g y g y p x y f x′ ′= =  

py(y) is singular (blows up) wherever f ′(x) vanishes. This is fine as long as the resulting 
probability ∫py(y) dy  remains finite when integrating over the singularity. Generally, these 
singularities imply another difficulty: y = f (x) may not have a unique inverse, because 
several values of x may result in the same value for y (a common example is y = x2). Thus 
there may exist several branches of the inverse function: x1 = g1(y), x2 = g2(y), etc. In this 
case the derived PDF must be calculated from px(x) using a sum over the various branches of 
the inverse function x (y): 

1.6  ( ) ( ( )) ( )y x i i
i

p y p x y f x′= ∑  Derived PDF of y = f(x) 

ST AT ISTICS  OF SEVERAL  RANDOM VARIABLES 

Joint distributions of more than one random variable, statistical independence 
Given two random variables x and y, say, we may ask for the probabilities of obtaining 

various combinations of values when they are jointly sampled. We thus obtain the idea of a 
joint probability distribution, and in particular, their joint probability density pxy . The 
differential probability of obtaining a value within dx of a particular x value along with 
obtaining a value within dy of a particular y value is then pxy(x, y) dx dy . As an extension of 
(1.1), we get equation (1.7) on page 7. 

 
Figure 1-2: A typical sequence of independent samples (time horizontally, value vertically) of a 
random variable whose probability density is plotted at right. The mean of the distribution is 
shown by the solid horizontal line; the dashed lines are at one distribution standard deviation 
above and below the mean. The particular probability density shown is that of the normal 
distribution. 
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1.7  (  and  ) ( , )
y x

y x

b b

x x y y xy
a a

P a x b a y b p x y dx dy< < < < = ∫ ∫   Joint probability density 

The individual PDFs of the two random variables, px  and py , may be obtained from pxy  by 
integrating over the other variable: 

  ( ) ( , ) ; ( ) ( , )x xy y xyp x p x y dy p y p x y dx
∞ ∞

−∞ −∞
= =∫ ∫    

The individual PDFs obtained using these expressions are properly normalized if pxy  is. 

Two random variables are statistically independent if and only if their joint PDF factors 
into their individual PDFs: 

1.8  ( , ) ( ) ( )xy x yp x y p x p y≡   Statistical independence 

In this case the joint PDF integral (1.7) factors into two independent integrals, one over each 
of the two variables’ PDFs. Extending these results to more than two variables is straight-
forward. 

Statistical independence of random variables reflects the mathematical modelling of 
causally independent physical sources of variation in a measurement process.  

Expected values of functions of multiple random variables 
Extending the definition (1.2) of the expected value or mean value to a function of multiple 

random numbers is straightforward: 

1.9 E[ ( , )] ( , ) ( , )xyf x y f x y p x y dx dy
∞ ∞

−∞ −∞
≡ ∫ ∫    

The joint distribution means and variances of x and y are thus: 

 ( , ) ; ( , )x xy y xyx p x y dx dy y p x y dx dy 
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

≡ ≡∫ ∫ ∫ ∫    

 2 2 2 2( ) ( , ) ; ( ) ( , )x x xy y y xyx p x y dx dy y p x y dx dy   
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

≡ − ≡ −∫ ∫ ∫ ∫    

If the random variables x and y are statistically independent, then each of these expressions 
simplifies to that for a single random variable, (1.4) and (1.5).  
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Another second moment exists for the joint distribution, the covariance of random 
variables x and y: 

1.10 2 ( )( ) ( , ) E[ ]xy x y xy x yx y p x y dx dy xy   
∞ ∞

−∞ −∞

≡ − − = −∫ ∫   Covariance 

The covariance may be either positive or negative, but will vanish identically if the two 
random variables are independent. The covariance is positive if joint samples of the two 
variables tend to be above their respective means or below their means at the same time and 
is negative if the joint samples tend to vary oppositely away from their means. Examples are 
shown in Figure 1-3. Scaling the covariance by the product of the individual variables’ 
standard deviations results in the correlation coefficient 𝜌xy = σ 2

xy/(σxσy) (more properly 
called Pearson’s correlation coefficient*). Since −1 ≤ 𝜌xy ≤ 1, this quantity is a measure of 
the relative strength of the correlation between the variations of x and y away from their 
means.  

 
 2 0xy >s   2 0xy =s  2 0xy <s  

Figure 1-3: Samples of joint distributions showing the effects of covariance on their behaviors. 

The vanishing of their covariance does not guarantee that two random variables are 
independent, as illustrated in Figure 1-4. 

Figure 1-4: Samples of two dif-
ferent joint distributions of 
random variables x and y, both 
of which have vanishing covari-
ance. The variables are statisti-
cally independent in the right 
distribution, but are clearly not 
in the joint distribution depict-
ed at left.  

 
 

                                                 
* English mathematician Karl Pearson (1857–1936). 
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The sum and arithmetic mean of a set of random variables 
An important special case of a function of multiple random variables is their sum. We wish 

to determine its distribution mean and variance. Let 

 1 2
1

( , , , )N

N
i

i
f x x x x

=
= ∑    

where the xi  are elements of a finite set of N random variables.* Using the linearity of the 
expected value (1.3), the mean (expected value) of the random distribution of the sum f will 
simply be the sum of the individual random variable means, and the variance of f may be 
found using (1.3) and (1.10): 

1.11 1 2
1

E[ ( , , , )]N i

N
f x

i
f x x x 

=
= = ∑   Statistical mean of a sum 

( )2 2 2

, 1 , 1 , 1

2

, 1

E[ ] ( ) E E[ ]i j i j

i j

N N N
f i j x x i j x xf

i j i j i j
N

x x
i j

f x x x x
= = =

=

 
 = − = − = −
  

=

∑ ∑ ∑

∑

     


 

So the sum’s variance is the sum of the terms’ covariances. Whenever i = j  in a covariance, 
that term is just the variance σ 2

xi ; there will be exactly N such terms. Each covariance with 
i ≠ j  is counted twice, since σ 2

xiy i  = σ 2
yix i . Thus we can rewrite the above sum as: 

1.12 
1

2 2 2

1 2 1
2

i i j

N N i

f x x x
i i j

  
−

= = =
= +∑ ∑∑   Variance of a sum 

If the individual random variables xi  are all independent of each other (or just uncorrelated, 
which is a weaker criterion), then the sum over the covariance terms in (1.12) vanishes 
identically, and the standard deviation of the sum is given by a Pythagorean sum (square root 
of the sums of the squares), or quadrature, of the component random variables. This will turn 
out to be a most important result (1.13). 

 Standard deviation of a sum of independent random variables 

1.13 2
i ix xΣ = ∑s s    

                                                 
* Note that in this section the various xi represent different random variables, not samples of a single random 
variable x. 
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The arithmetic mean (average) of the N random variables is their sum divided by N. 
Therefore, using (1.11), the arithmetic mean of a group of random variables will have a 
distribution with an expected value (statistical mean) which is the arithmetic mean of the 
members’ expected values. Dividing the sum (1.11) by N will clearly reduce the sum 
distribution’s width by the same factor; this implies that the arithmetic mean’s standard 
deviation will also be N times smaller than that of the sum, (1.13). 

If N independent random variables all have the same standard deviation σ, then their 
sum’s standard deviation will be N σ, and the standard deviation of their arithmetic 
mean (average) will be σ / .N   

PDF of the sum or average of several random variables 
Given two random variables x and y with joint PDF pxy(x, y), we can calculate the PDF of 

the derived random variable z = x + y  by considering all combinations of x and y whose sum 
is z. The resulting PDF must therefore be: 

 ( ) ( , ) ( , )x y xy xyz x y p z p x z x dx p z y y dy
∞ ∞

+
−∞ −∞

= + ⇒ = − = −∫ ∫    

The two integrals must be equivalent because each is just the integral of pxy(x, y) along the 
line z = x + y  (with specified, fixed z) in the x-y plane. If the two random variables x and y 
are independent, then the integral becomes a convolution of their two independent PDFs (the 
roles of x and y in the convolution may be exchanged without affecting the result):  

 PDF of a sum of two independent random variables 

1.14 ( ) ( ) ( )x y x yp z p x p z x dx
∞

+
−∞

= −∫    

If the sum is of N >2 independent random variables xi , then the resulting PDF may be 
found by iteration: for example, if w = x + y + z , then first find the PDF of u = x + y  and use 
the result to find the PDF of w = u + z . Continue to iterate this procedure to include more 
terms, resulting in a sequence of convolutions: if pN−1(z) is the PDF for the sum of the first 
N−1 variables (with p1(z) ≡  px1(x1) ), then: 

1.15 1( ) ( ) ( )NN N N N Nxp z p x p z x dx−
∞

−∞
= −∫   

Examples of this process will be discussed later. The average of N random variables is their 
sum divided by N. The width of the resulting distribution is reduced by a factor of N, and for 
the PDF to remain normalized it must be everywhere increased by a factor of N. If −x  is the 
random variable representing this average, then using (1.15) −x = z/N , and p−x (−x) = NpN (z). 
Therefore p−x (−x) = NpN (N−x), with the sum PDF pN  calculated by iteration using (1.15). 
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Independent samples of a single random variable 
Given the results for the distribution statistics of several different random variables 

considered jointly, we are now ready to define the statistics of a finite set of samples of a 
random variable. A set of N noisy measurements {xi}, i ∈ {1…N}, is assumed to be part of a 
sequence of samples of a random variable x with PDF px , as already described. The 
ensemble PDF of each of the individual samples is also given by px , so we could consider 
each measurement xi  to be a single sample of a random variable xi , all of which have 
identical PDFs. This implies that the distribution statistics of a set of N measurements is 
described by the joint statistics of N identical random variables. 

Therefore, all of the relations found previously for the distribution statistics of functions of 
N distinct random variables will also apply to N samples of a single random variable x, 
assumed to describe our noisy measurements. Our measurements are defined to be 
independent if the joint PDFs of the N random variables xi  factor: pxjxk = pxj pxk . In this 
case they are also uncorrelated, and their pairwise covariances vanish: σ 2

xjxk = 0. In practice, 
we must be especially careful with our experimental technique if we want statistical 
independence of our measurements. This issue will be examined in a later chapter. 

The statistics of N independent samples of a single random variable are the same as 
those of single samples from each of N independent random variables, all of which have 
identical distributions. Therefore we can use the formulas from this chapter to describe 
the statistics of multiple independent samples drawn from a single random variable.   

 

NOISE  AND THE NORMAL DIST RIBUTI ON 

The normal distribution 
The most important and studied continuous random distribution is the Gaussian, or normal 

distribution, thoroughly analyzed by J. Carl Friedrich Gauss in 1809.* The PDF for this 
distribution, (1.16), exhibits the familiar “bell curve” shape and was the distribution used for 
Figure 1-2 on page 6. 

1.16 
2

22
1 ( )( ) exp

22

xp x 


 − −
=  

  
  Normal Distribution 

The two free parameters μ and σ in (1.16) are the distribution’s mean and standard 
deviation, respectively, and completely define the distribution; the leading coefficient 

                                                 
* Gauss still remains probably the most brilliant and important mathematician to have ever lived. Along with the 
normal distribution, his 1809 text also introduced the maximum likelihood and least-squares methods, which we 
examine later. 
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normalizes the area under the PDF to 1. A plot of the normal distribution is shown in Figure 
1-5, and some of its properties of are listed in Table II on page v. The normal distribution 
PDF falls quite rapidly away from its mean, dropping to <14% of the peak 2σ away. 

 
Figure 1-5: PDF plot of the normal distribution. The vertical axis is at the distribution mean μ ; its 
ticks show the magnitudes (relative to the peak) at ±σ and ±2σ from μ. 

The sum or average of several independent Gaussians 
Consider the sum of a set of N independent, normally-distributed (Gaussian) random 

variables xi , with various means μ i  and standard deviations σ i . From equations (1.11) and 
(1.12), we know that the sum distribution will have μ  = Σμ i  and σ2 = Σσ 2

i . The sum PDF 
may be derived using the sequence of convolutions (1.15). In particular, we derive px1+x2(z) 
in order to get the sequence started: 

2 2
1 2

1 2 1 2 2 21 2 1 2

( ) ( )1
2 2 2

( ) ( ) ( ) exp expx z x
x x x xp z p x p z x dx dxµ µ

ps s s s

∞ ∞ − − − − −
+ −∞ −∞

   
= − =    

   
∫ ∫  

2
1 2

1 2 2 22 2
1 21 2

1 2

1 2

( )1
2 2 22( )2 ( )

( ) exp z
x xp z µ µ

s sp s s

µ µ µ

s s s
− − −

+
++

= +  = ⇒   = +  
 

Thus the distribution of the sum of two independent Gaussians, px1+x2(z), is also Gaussian, 
with mean and variance equal to those given by equations (1.11) and (1.12). At each iteration 
in the sequence (1.15) to evaluate the sum distribution, the integral is a convolution of two 
Gaussians, resulting in another Gaussian. Thus the sum or average of several independent 
Gaussians is also Gaussian, with mean and variance given by (1.11) and (1.12). 

The central limit theorem 
In many situations wherein a large number of independent, relatively tiny effects combine 

to result in observed noise or scatter in a set of measurements, the resulting distribution of 
values is found to be modeled quite well by assuming that the measurements are samples of a 
normally-distributed random variable. This seemingly mysterious behavior was found to be 
explained by the aptly-named central limit theorem, one of the foundations of modern 
statistics and statistical mechanics. The gist of the theorem, for our purposes, is stated in the 
highlighted box on the next page. 
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The Central Limit Theorem* 

If a new random variable is created from the sum (or arithmetic mean) of a large 
number of independent random variables, then in the limit that the number of variables 
becomes infinite, the probability distribution of the new random variable is that of the 
normal distribution. This remains true under very liberal conditions on the distributions 
of the constituent random variables being averaged. 

No matter what may be the probability distributions of the individual, underlying random 
variables (and they may all have different distributions), then, as long as they are statistically 
independent of one another, the sum of a large number of them will be well-approximated by 
a normally distributed random variable! The only real requirements on the individual 
distributions are that they have well-defined, finite means and variances, although even these 
conditions may be further relaxed for some limited classes of distributions. 

Infinity, after all, is a large number! Just how many random variables must be added for the 
resulting distribution to be well-represented by a Gaussian? For many common distributions 
of the underlying variables, the answer may be “less than you think,” at least as long as we 
don’t look too many standard deviations away from the mean (that’s where the word 
“central” comes in). Consider this example: N random variables x1…xN , all with the same 

                                                 
* The theorem’s more than 200 year history includes the works of many mathematicians from Abraham de 
Moivre in 1733 to Alan Turing in 1934. A 1922 work by the Finnish mathematician Jarl Lindeberg cast it into 
its modern form. 

 1N =   2 3 

 
 5N =   10 20 

Figure 1-6: Comparisons of uniform-sum distribution PDFs to Gaussians for various numbers of 
independent terms in the sum. The N = 1 case shows the uniform distribution between ±1/ 2 
assumed for each term. Each Gaussian has μ = 0 and σ 2 = N/12, the same as its corresponding 
uniform-sum (note that the horizontal and vertical scales differ from plot to plot). Note the rapid 
convergence of the sum PDFs to a Gaussian shape. 
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uniform probability distribution: |x| ≤ 1/2: p(x) = 1; |x| > 1/2: p(x) = 0 (so μ  = 0 and 
σ2 = 1/12). 

Form a new random variable z given by the sum of the N original, independent random 
variables: z = Σxi . The resulting PDF is that of a uniform-sum or Irwin-Hall distribution.* 
As N increases it rapidly converges on a Gaussian distribution, as was illustrated in Figure 
1-6. The sum standard deviation σN  = /12N  (and thus the mean of N such variables has 
standard deviation σN  = 1 12/ N ).  

The χ2 distribution 
The variance of a random distribution x is its second moment about its mean: 

σ2 = E[(x−μ)2]. One may ask what the PDF of this squared deviation (x−μ)2 might be for 
some distribution of interest. Here we consider this question for the case of a Gaussian 
distribution ξ with mean 0 and variance 1, so that is: 

 
2 21

2
( )p e−= x

x p
x   

(one can always transform a Gaussian variable x into ξ by setting ξ2 = (x−μx)2/σ 2
x). Now 

transform ξ into y(ξ ) = ξ2 ≥ 0, and investigate the PDF of this derived variable, χ2 ≡ y(ξ ). 
Using (1.6) on page 6 to get the PDF of y, which has two branches to its inverse function 
ξ (y) and an integrable singularity at 0 :y =  

1.17 2
21

2
( 0) y

y
p y eχ p

−> =   χ2 for a single Gaussian 

This is known as the chi-squared distribution with 1 degree of freedom, which describes 
the distribution of the squared deviation from the mean of a single Gaussian random variable. 
More interesting is the distribution of a sum of ν independent χ2 variables drawn from that 
same underlying Gaussian ξ. The result is known as the chi-squared distribution with ν 
degrees of freedom, χ2

ν , and it will turn out to be very important when quantitatively 
evaluating theories or for fitting functions to measured data (see Chapter 3 and Chapter 4).   

To get the PDF for χ2
ν  from (1.17), one iterates through the sequence of convolutions 

(1.15) on page 10 (not a trivial task): 

1.18 
( )

2

2
2

2

1( 0)
2

yyp y e
ν

ννχ ν

−
−> =

Γ
  χ2 for ν degrees of freedom 

The χ2
ν  PDF is identically 0 for 0.y <  Γ( ) is the gamma function, related to the factorial 

function for positive arguments. For ν > 1, the χ2
ν  PDF is nonsingular. See Figure 1-7 for 

                                                 
* Statistician Joseph Irwin (1898–1982) and mathematician Philip Hall (1904–1982), both British. 
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plots of a few χ2
ν  PDFs. The mean and variance of the χ2

ν  distribution are: 

1.19 22
2; 2
νν χχµ ν s ν= =   χ2 mean and variance 

 
Figure 1-7: χ2 distribution PDF plots for various degrees of freedom ν. The distribution approaches a 
Gaussian for large ν, as would be expected from the central limit theorem. For small ν, however, the 
distribution is quite asymmetric (skew). All PDFs vanish identically for χ2 < 0. The vertical and 
horizontal axes for each function are scaled as shown so that the functions are more easily compared. 

The reduced chi-squared 
Dividing χ2

ν  by its degrees of freedom ν results in the mean of ν independent, random χ2 
variables, rather than their sum. This new random variable is the reduced chi-squared, χ∼ 2

ν: 

1.20 2 2 /ν νχ χ ν≡   Reduced chi-squared 

From (1.19) we can easily see that the χ∼ 2
ν  distribution has a mean of 1 and a standard 

deviation of 2 .  The PDFs for various χ∼ 2
ν  are what are actually plotted in Figure 1-7 

(note the scaling of the x-axis). In terms of the reduced chi-squared, numerically integrating 
the PDF in (1.18) will show that the probability is greater than 84% that a χ∼ 2

ν  variate will be 
less than one standard deviation above its mean, P (χ∼ 2

ν  < 1+ 2 ) > 0.84,  and the 
probability is less than 5% that χ∼ 2

ν  will be more than 2 standard deviations above 1 (if ν = 1 
the probability is 94.96%). These observations will prove to be quite important when 
comparing measured data to theoretical predictions (Chapter 3 and Chapter 4). 

2( )p νν χ

2
νχ ν

ν ν
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Chapter 2  
From samples to statistics 

When one performs a measurement during the course of an experiment, it is essential to 
have some estimate of the accuracy of the resulting value. For example, after considering all 
potential sources of error, is an experimenter’s measurement of an atomic emission line 
wavelength likely to be accurate to within 10 nanometers, 1 nanometer, or 0.1 nanometer? In 
this chapter we begin to tackle the problem of estimating the magnitudes of the errors in a set 
of measurements, which we refer to as the measurements’ uncertainties. Once we have these 
uncertainties of our data points in hand, we must understand how these uncertainties as well 
as those introduced by other sources of error propagate through the mathematics required to 
compare our results to theoretical predictions. The framework presented in the previous 
chapter will be essential to our approach, an approach whose development and potential 
consequences occupy much of the remainder of this text. This chapter starts that development 
and is concerned with two fundamental topics: (1) how to properly estimate the uncertainties 
in a collection of data points, and (2) how to propagate uncertainties in numerical values 
through various mathematical calculations. 

DETERMINING MEASUREMENT  UNCERT AINTY 

Estimating the magnitude of the possible error in a single, isolated, measured value only by 
considering experimental technique and instrument calibration and resolution, although 
sometimes unavoidable, can be notoriously inaccurate. We need to determine a data point’s 
uncertainty in a way that is logically sound and defensible. To do this we begin by 
considering the types of error sources which can limit the accuracy of a measurement. Error 
sources have a seemingly infinite variety, but for now we can divide them into three broad 
categories: (1) noise and drift, which cause differences in the values obtained by repeated 
measurements; (2) systematic errors, such as instrument calibration errors and dimensional 
errors in the apparatus, which do not cause observable fluctuations in the values obtained by 
repeated measurements; and (3) measurement precision or resolution, which determines the 
smallest difference between measurement values which can be detected. 

Noise vs. systematic error 
Noise and drift are general categories of random errors which manifest themselves as a lack 

of repeatability in experimental measurements. The scatter in the values of repeated 
measurements illustrated in Figure 1-1 on page 1 serves as a typical example. This behavior 
has been the motivation for the development of the mathematical concept of samples of a 
random number explored in Chapter 1. The general distinction between noise vs. drift, as 
used in this text, is that noise describes those sources of random measurement errors which 
vary rapidly, so that the correlations in the errors of successive measurements can be made 
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small, whereas drift is caused by sources which vary slowly during the course of an 
experiment, causing a noticeable correlation in the errors in a set of successive 
measurements. Error due to drift can commonly also be seen when an experiment is repeated 
after several hours or days, generating new results which are incompatible with the observed 
scatter due to noise during the original experiment.  

Data errors introduced by noise which cause independent fluctuations in successive 
measurements are the most tractable. The model introduced in the last chapter of data points 
as independent samples of a random variable will allow us to estimate the statistics of the 
underlying random variable in order to estimate uncertainties. This chapter’s next section on 
Point estimation provides the details. Drift, on the other hand, because it leads to correlated 
errors in successive data points, usually requires special handling of some sort. Its effects 
may often be addressed using techniques similar to those needed to handle sources of 
systematic error, so we put off its analysis to Chapter 5, Dealing with systematic errors. 

Systematic error is the general term used to describe errors introduced during the design, 
construction, and data acquisition phases of an experiment which affect the accuracies of all 
measurements in strongly correlated ways. Sources of such errors are everywhere you look in 
an experiment: the calibration error in a voltmeter, the angular alignment error of the fixed 
arms of an interferometer, the position and alignment errors in the placement of particle 
detectors around a particle collision site, the machining errors in the dimensions of a resonant 
cavity, particle trajectory errors introduced by improperly analyzed fringe fields of an 
electromagnet, changes in the dimensions or electrical characteristics of the apparatus caused 
by changes in laboratory temperature or humidity, etc. You can probably easily think of 
many more examples.  

Because such fixed, systematic errors do not lead to seemingly random scatter in repeated 
measurements (as in Figure 1-1), the magnitudes of their individual effects on an 
experiment’s accuracy can be much harder to determine. In many experiments of 
fundamental importance, unfortunately, these errors may be the dominant determiners of the 
experiments’ accuracies. As mentioned in the previously, we delay the detailed consideration 
of such errors until Chapter 5.  

Finite precision, resolution, and round-off errors 
Lastly, consider the errors introduced by the finite precision of the measuring instruments 

used. By precision, we mean the “number of decimal digits” obtainable during a 
measurement. The closely related concept of resolution describes the smallest change in a 
measured value which is consistently detectable by an instrument. This precision or 
resolution may be limited by the number of digits available on a digital instrument’s display, 
the number of bits used in an analog to digital converter (ADC), or the smallest length 
divisions scribed on a precision caliper, to name just a few. Errors introduced by such a 
truncation to a finite number of digits are variously called round-off errors, quantization 
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errors, or quantization noise, but all are basically the same in their effects on the data. The 
experimenter should, of course, choose a measuring instrument with a precision appropriate 
for the expected overall accuracy of the experiment, because high-resolution, precision 
instruments can be much more expensive to acquire and maintain than their less precise 
counterparts. If a measurement’s accuracy will be dominated by one or more sources of 
systematic error, paying for instrument precision beyond that accuracy limit may be a waste, 
as would be the reduction of noise fluctuations to well below the accuracy limit imposed by 
that systematic error. 

Properly estimating data uncertainties introduced by round-off or truncation can be subtle. 
A single measurement which is rounded off or truncated to a finite precision could represent 
any actual numerical value within the interval determined by the resulting measurement 
resolution. For example, measuring a length to the nearest millimeter implies that the actual 
length could be anywhere within ±0.5mm of the recorded value. With nothing else to go on, 
one must assume that the actual length is equally likely to be anywhere within this interval, a 
uniform PDF within the interval and 0 outside it.* The uniform distribution described in the 
last chapter (see Figure 1-6 on page 13) characterizes this situation; it has a standard 
deviation of 1 12/  times the resolution, or about 0.3mm. 

Uncertainty due to round-off 

A single measurement rounded off to a finite increment has a distribution standard de-
viation (uncertainty) of 1 12/  (about 0.3) of the round-off interval. If additional 
rounded off measurements yield the same value each time, then their mean cannot be 
assumed to have uncertainty decreasing as 1 12/ N . 

As far as our data analysis procedures are concerned, a set of multiple measurements, 
each of which is rounded off or truncated to the same value, is completely equivalent to 
taking only a single measurement: no advantage is gained by taking multiple measure-
ments. 

Taking more measurements, even if they all round off to the same result, might tempt one 
to think that their mean might have a standard deviation of only 1 12/ N  of the round-off 
interval, but this conclusion is rarely justifiable. For example, assume that a resonant cavity 
has a length of 12.35mm. The experimenter rounds off each of 20 measurements of its length 
to the nearest millimeter, 12mm. Each measurement would then have a value and an 
uncertainty (standard deviation) of 12.0±0.3mm, but the value and uncertainty of the mean 
of the 20 measurements, and thus of the recorded length of the cavity, are certainly not 
12.0±0.06mm! The reason for this is that the error of each measurement is −0.35mm, so 

                                                 
* The likelihood PDF is uniform within the interval and 0 outside it. We define the concept of likelihood in the 
next chapter. 



  Physical Data Analysis 

19 
 

that the errors in the measurements are strongly correlated and not due to independent, 
random noise (with σ  = 0.3mm). This situation invalidates the formula for the uncertainty in 
the mean of multiple independent measurements presented in Chapter 1.  

If the accuracy of the data is expected to be limited by noise, then one should choose an 
instrument which has a resolution sufficient to detect these noise-induced fluctuations in the 
data. As a result, repeated measurements will display fluctuations due to the noise. The 
experimenter can use the observed scatter in the measurements to analyze the noise and 
improve the accuracy of the experiment’s results, as explained in this and the next few 
chapters. In other words, this lack of repeatability will turn out to be an asset! This fact is so 
important that digital instrument manufacturers often improve the performance of their 
products by artificially adding random noise to the data prior to measurement. The added 
noise is enough to cause observable fluctuations in the truncated or rounded off 
measurements limited by the instrument’s basic resolution. By averaging the results of 
multiple, slightly noisy measurements, the ultimate precision of the instrument can then be 
improved.*  

In the case of the length measurement example presented earlier, the experimenter should 
attempt to carefully interpolate each measurement to a better precision that the nearest 
millimeter. Multiple measurements could then show random scatter subject to the analysis 
techniques presented here, potentially improving the precision of the experiment’s results. 

Always try to interpolate the markings on any continuous (analog) scale used to perform 
a measurement, such as on a ruler or analog voltmeter. Multiple measurements may 
then show fluctuations which can be averaged to improve the precision of the result. 

Determining the overall uncertainty in an experiment’s result 
Inaccuracies introduced by noise and those introduced by systematic errors must be 

handled very differently. In the end, the effects of both categories of error sources must be 
included when determining the final uncertainty to be assigned to an experiment’s result. We 
can say, however, that a general approach to estimate overall experimental accuracy is a two-
step process: 

1. Random, independent measurement fluctuations (lack of repeatability) introduced by 
noise are characterized and used to assign uncertainties to individual data point 
results. These data points are then compared to theoretical models whose free 
parameters are optimized using the techniques presented in this and the next two 
chapters. Provisional agreement with the optimized model or models can then be 
evaluated and initial uncertainties in the model’s parameter values may be assigned. 

                                                 
* Among the techniques used are those referred to as dithering, oversampling, and stochastic modulation. 
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2. The effects of uncertainties due to the various systematic error sources are determined 
and those effects are combined with the uncertainties determined in (1) using error 
propagation techniques discussed later in this chapter. The final results will include 
uncertainties due to noise, the fitting and optimization of theory free parameters, and, 
finally, systematic errors.  

 

POINT  EST IMATION 

The most accurate and logically justifiable way to estimate a measurement’s uncertainty 
due to lack of repeatability (noise) is by collecting a set of multiple data samples while 
attempting to maintain the same experimental conditions. In this section we develop the 
techniques to properly analyze a set of data samples to determine the best value for a 
measurement and its associated uncertainty introduced by this lack of exact repeatability. 
Since we are attempting to determine the value of a single physical quantity, our process is 
called point estimation. 

One very important caveat concerning the method presented here: it can only deal with 
errors in the data which manifest as random, independent scatter (noise) in the values 
obtained following repeated measurements of the quantity. Other sources of error, such as 
calibration errors and gain drift, can be quite important and must be treated differently. See 
Chapter 5: Dealing with systematic errors for details. 

Estimating the distribution mean and variance 
As we attempt to accurately measure a single physical quantity, we repeat the measurement 

several times to obtain a set of samples with a variety of different measured values. If we 
were to continue to repeat the measurement many, many times, keeping the experimental 
conditions as constant as we can, we expect that the samples would be more or less clustered 
about some average, with a relative frequency which would converge to some smooth 
distribution, as in Figure 1-1 on page 1. This assumption formed the foundation of the 
analyses presented in Chapter 1. 

As described in Chapter 1 we model our noisy data as independent samples generated by a 
random variable. If we knew the distribution of the random variable, then we could calculate 
probabilities and expected values from its PDF. In reality, however, all we have to work with 
is our finite set of measurements. This section describes simple techniques we may use to 
analyze our samples and generate an approximate model of an appropriate random variable, 
as well as how to estimate our uncertainty in the model’s accuracy. 

Assume that a noisy data set is well-modeled as samples of a random variable y. If y is a 
distribution with a well-defined mean and variance, as are the uniform and normal 
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distributions, then the expected value of any sample of y would be the distribution mean, μ . 
The noise-induced deviations of the various sample values away from μ  will be characterized 
by the distribution variance, σ2. If we are careful with our experimental technique, then we 
can model our data as independent samples of this distribution. From the section The sum 
and arithmetic mean of a set of random variables starting on page 9, we know that the 
arithmetic mean −y  of N independent data samples yi  will also have a distribution mean of μ , 
but it will have an expected variance about μ  of σ2/N . By the central limit theorem, we also 
expect that the distribution of −y  will be more like a Gaussian than the distributions of the yi . 

If the noise inherent in our measurement process is likely to introduce errors distributed 
symmetrically about the actual physical quantity Y we’re interested in measuring, then the 
distribution mean μ  of the sample set {yi} is appropriately identified with Y. If, on the other 
hand, the error distribution is expected to be somewhat asymmetric, then whether or not to 
use μ  as our value for Y is more problematic. For this elementary discussion, however, we set 
aside this question and assume that μ  is the value we seek. Consequently, we want the best 
estimator of μ  derivable from our N-sample data set {yi}. 

In fact, the best estimator of μ  is our sample set’s arithmetic mean −y = Σyi/N . By “best” 
we mean that (1) −y  is unbiased: its expected value is μ  no matter how large or small N may 
be, and (2) −y  has a distribution with lower variance than any other unbiased estimator of μ 
constructible from N samples drawn from a Gaussian random variable.* From (1.13) and the 
discussion following that equation we know that σ 2

μ  = σ2/N .† Therefore to properly estimate 
the uncertainty in −y  we require σ2. Unfortunately, we have only our N particular samples yi . 
We can, however, determine the expected value of Σ( yi − −y )2 in terms of N and the 
distribution’s hypothesized σ2. This relation can then be inverted to provide us with an 
unbiased estimate of σ2 using Σ( yi − −y )2:  
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* The median of N samples from a normal distribution, for example, has variance 2( 2) ( 1)/ N −  . The proof 
that the sample mean −y  is a minimum variance unbiased estimator (MVUE) of the distribution mean is beyond 
the scope of this text. −y  will not be a MVUE if the underlying distribution has very large “wings,” implying that 
its variance is not defined. In such cases, another average such as the median may be a better choice. 
† By σ 2

μ  we really mean the variance of −y , our estimate of μ, which is E[(−y  –μ)2]. This is the uncertainty in 
our estimate of the distribution mean μ. 
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The final expression obtains because the samples are assumed to be independent, so their 
covariances vanish.  Because this result will be the same for each of the samples, the sum 
Σ( yi − −y )2 is expected on average to be N times this result, or (N−1)σ2. Thus an estimate of 
the underlying random variable y’s variance σ2 is: 

2.1 2 2

1

1 ( )1

N
i

i
s y yN

=
= −

− ∑   Sample variance 

Our estimate is called s2, the sample variance. It turns out that this is the best unbiased 
estimator of σ2 constructible from N independent measurements. Note that if there were only 
a single measurement y, then −y = y  and N = 1, so that s2 = 0/0, leaving σ2 completely 
indeterminate, as would be expected from only a single measured data value. 

The uncertainties in the estimations of μ and 𝛔μ 
From the results of the previous section we find that we can use our N independent samples 

yi  to estimate the mean μ  and variance σ2 of the parent distribution by calculating the sample 
arithmetic mean −y  and the sample variance s2. Because we really are interested the 
distribution mean μ  and our uncertainty in its value, we should use an estimate of the 
variance in −y , namely σ 2

μ  = σ2/N≈ s2/N . The square root of this value could then estimate 
the expected standard deviation of −y  around the desired result μ .*  

Our resulting point estimate of the physical quantity Y we attempted to determine with our 
N independent measurements yi  is then given by: 

 Point estimate from N samples 
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The uncertainty of Y is to be interpreted as meaning that, should the experiment be 
repeated many times, the distribution of the estimates of Y will have a standard 
deviation of σY about the actual value of the physical quantity. 

                                                 
* It turns out that the square root of the sample variance s2 is not the expected value of the standard deviation 

of N samples, but the ratio is close to unity except for very small sample sizes. For samples of a Gaussian 
random variable, the sample variance is described by the chi-squared distribution introduced on page 14; the 
sample standard deviation, on the other hand, is described by the closely related chi distribution. Since the 
uncertainty in the determination of either the variance or the standard deviation is large if N is small, then the 
error introduced by using the square root of the sample variance as the distribution standard deviation is 
unimportant. 
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Just how accurately do we know the uncertainty σY? The χ2 distribution discussed on page 
14 and illustrated in Figure 1-7 provides an answer. An N-sample sum Σ( yi − μ)2/σ2 of an 
underlying Gaussian distribution is distributed as a χ2 variate with N degrees of freedom, but 
the sum (N−1) s2/σ2 = Σ( yi − −y )2/σ2 has only N−1 degrees of freedom (because −y  is the 
average of the N samples and not independently determined, adding a constraint on the yi). 
The variance of this latter χ2 variate away from its mean of N−1 is, from (1.19) on page 
15, equal to 2(N−1), so the expected standard deviation of s2 away from σ2 (which is the 
uncertainty in our estimate of σ2) may be estimated as follows: 

 2 2 2 22
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This expression is only a rough approximation because the yi  may not have a Gaussian 
distribution, and for small N the final substitution σ2→ s2 can be quite inaccurate. It will do 
for our purposes, however.  

As we will show in the next section of this chapter the standard deviation of the square root 
of s2 will be only half as large fractionally: 
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This then gives us an estimate of “the uncertainty of the uncertainty” in our value for the 
physical quantity Y: 

2.3 
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~~   Accuracy of the uncertainty  

For only two samples, any uncertainty calculation is probably only an order-of-magnitude 
estimate; for 5 samples it is approximately accurate to 35% (and the variance’s uncertainty is 
twice as large: a disappointing 71%). The moral of the story: don’t take the uncertainty 
estimate in (2.2) as very accurate if the samples are few. 

The estimation of σ2  using the sample variance s2 will be very important to the utility of 
the material presented in the following chapters of this text. You will want as accurate 
an estimation of σ2  as you can get in order to properly interpret quantitative 
comparisons of theory to your results. The expression in (2.3) will be particularly 
important to keep in mind as you study the materials in Chapter 3 and Chapter 4. 
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Examples of point estimation  
Consider first the data shown in Figure 2-1, consisting of six independent voltage 

measurements collected while attempting to maintain the experimental conditions constant. 
Using the equations (2.2), the estimates of the distribution mean and standard deviation are 
given by the arithmetic mean of the samples, 883.7V, and the sample standard deviation, 
2.7V. The estimated uncertainty in the distribution mean is then 62.7V 1.1V./ =  These 
uncertainties, 2.7V and 1.1V, are illustrated by the dotted and dashed lines in Figure 2-1. 
From expression (2.3), the accuracy of the uncertainty estimate is ~32%. 

 

 

Figure 2-1: Plot of a sequence of six voltage 
measurements obtained while the experi-
menter carefully attempted to maintain the 
same conditions for each voltage determina-
tion. The thick red line is at the arithmetic 
mean of the voltage values. The two dotted 
gray lines are at ± one sample standard de-
viation from this mean. The dashed red lines 
are at ± the uncertainty in the distribution 
mean value. All were calculated using equa-
tions (2.2). 

 

For the next example, consider the much larger data set in Figure 2-2. The data consist of 
gamma-ray event counts vs. energy channel number for a portion of a multi-channel analyzer 
spectrum output generated by a scintillation detector. The event rate is expected to be very 
nearly independent of gamma-ray energy for this region of the spectrum, and an estimate of 
the expected counts/channel and its uncertainty is desired. Using expressions (2.2) with the 
88 samples results in a mean rate of 82.1±1.0 counts/channel (shown by the red solid and 

  
Figure 2-2: Gamma-ray detector event counts vs. energy channel number (both channel numbers 
and counts are integers for each data point). The right-hand plot is a histogram of counts/channel 
along with a Gaussian representing the sample data mean and the sample standard deviation. 
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dashed lines in the left-hand plot in Figure 2-2), and the calculated sample standard deviation 
about this mean is 9.4 counts/channel (the gray dotted lines in the same plot). Because there 
are 88 data samples, the uncertainty in the estimated mean rate (±1.0) is an order of 
magnitude smaller that the observed spread in the data (±9.4). 

The right-hand plot in Figure 2-2 is a histogram of the relative frequencies of the various 
counts/channel values along with a plot of a Gaussian with mean 82.1 and standard deviation 
9.4. It appears that the Gaussian distribution provides a fair representation of the observed 
data frequencies, at least by eye. A quantitative test of the consistency of a sample set with a 
Gaussian distribution is presented in the next chapter. Pure counting statistics would require 
that the distribution of counts/channel data be described by a Poisson distribution (see 
Chapter 6). If this were the case, then the expected standard deviation in the counts/channel 
data should be given by the square root of the expected count number, or, given the observed 
mean rate, 9.1. The estimated uncertainty in the distribution standard deviation calculated 
from the 88-sample standard deviation of 9.4 is, using (2.3), approximately 7.6% or about 
0.7 counts/channel. Thus, given its expected accuracy, the sample standard deviation of 9.4 is 
quite consistent with the Poisson distribution’s value of 9.1. 

PROPAGAT ION OF UNCERT AINTIES 

Assume an experiment results in the determination of one or more numerical values with 
associated uncertainties: x ±σx , y ±σy , etc., possibly by using the point estimation technique 
of the previous section. Now we wish to use these values in an algebraic expression in order 
to calculate some derived quantity z = f (x, y, …). What uncertainty σz  should be assigned to 
the calculated value z? This is the problem addressed by the techniques of error propagation, 
which are really methods to propagate uncertainties through numerical calculations. 

Functions of a single uncertain value 
First consider the case of an expression z = f (x) containing a single experimentally-

determined value x ±σx . This implies that the value of the expression will then have an 
associated uncertainty: z ±σz = f (x ±σx). How do we estimate z ±σz? For example, a 
sound wave with a very precisely known frequency   has its wavelength measured to be 
λ ±σλ; you wish to use this value to determine the speed of sound c = λ  and its associated 
uncertainty σc . By the phrase “experimentally-determined value x ±σx” we mean, for 
example, the value and uncertainty determined by a point estimate such as expressions (2.2) 
on page 22.* Our goal is then to estimate the expected value of the derived quantity z = f (x) 
and its standard deviation. If we knew the correct probability density function px , we could 

                                                 
*  Another example would be that σx  is the standard deviation of the likelihood function about our 

experimentally-determined value for x. More about the likelihood function in the next chapter. 
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calculate any desired statistics of z = f (x) in the standard way using (1.2) (assuming the 
integrals converge): 

 2 2 2E[ ( )] ( ) ( ) ; ( ) ( )z x z x zf x f p d f p d
+∞ +∞

−∞ −∞
 = = = − 
 ∫ ∫µ x x x s x x x µ   

In the case we’re considering, however, we don’t know px  in any detail (although we may, 
for example, expect that it is approximately Gaussian). To proceed in the face of our 
incomplete knowledge we must content ourselves with estimates. Assume that x is our best 
estimate of the distribution mean μx  and that σx  is its uncertainty about μx . Expand the 
function z = f (x) in a Taylor series about μx  and consider only the first few terms: 

2.4 21
2( ) ( ) ( ) ( ) ( ) ( )x x x x xz f x f f x f x    ′ ′′= = + − + − +     

The expected value of z is then found by taking the expected value of each (x−μx)n  factor in 
the expansion, where we’ve used an overscore symbol to indicate the averaging operation 
(1.2) to calculate the expected value of an expression containing x: 
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The first derivative term vanishes because the expected value of x is μx . Thus our estimate 
of the expected value of z = f (x) is given by the final expression above. Since the measured 
value x is our best estimate of μx , and xs  is our best estimate of its uncertainty, we 
substitute these values to determine our best estimate of the value of μz → z:  

2.5 21
2( ) ( ) xz f x f x′′≈ +   Expected value of z = f(x ± σx) 

Again, x is our best estimate of its distribution mean ,x  and σx  is the experimental 
uncertainty of that estimate. Then (2.5) provides our estimate of z’s resulting expected value. 
Often the second derivative term is relatively small and can be ignored, so that a simple, 
adequate estimate is z ≈ f (x); this is the approximation used by default by the data analysis 
package CurveFit.  

One obvious exception wherein it would be incorrect to discard the second derivative 
term in (2.5) is the important case z = x2 with μx = 0 . In this case μz = σ 2

x .  Such a 
situation arises, for example, when we are interested in the average power generated 
by a noise source. 

Now for the estimate of σz . By equation (1.5) σ 2
z  = E[z2] − μ2

z.  Squaring the previous 
expansion (2.4) and keeping terms up to order 2, 



  Physical Data Analysis 

27 
 

 

22 2 21
2

2

2 2 2

( ) ( ) ( ) ( ) ( ) ( )

( ) 2 ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

x x x x x

x x x x

x x x x x

z f x f f x f x

f f f x
f x f f x

 ′ ′′= = + − + − + 
′= + −

′ ′′+ − + − +





    

   
    

  

Taking the expected value of this expression, 

 2 2 2 2 2E[ ] ( ) ( ) ( ) ( )x x x x x xz f f f f     ′ ′′= + + +    

Subtracting the square of expression (2.5) for μz  and keeping terms of second order and 
below, the only surviving term gives our estimate of the uncertainty of z: (where we again 
assume that ‘x’ is our best estimate of the distribution mean μx): 

 2 2 2( )z x xf ′≈      

2.6 ( )z xf x′≈   Uncertainty of z = f(x ± σx) 

The expression (2.6) may be a bit naïve in some situations, such as the simple case z = x2 
with μx = 0 mentioned earlier (for which (2.6) would give vanishing σ z). A more accurate 
expression, applicable if the distribution of the estimate of x is Gaussian, is: 

2.7 2 2 2 2 2 21
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In the case of z = x2 about μx = 0, this more accurate expression gives σ z ≈ 2 σ 2
x .  The more 

nonlinear the function f (x), the wiser it would be to consider the more accurate expressions, 
but in many cases the simple, naïve error propagation formulas (2.5) and (2.6) will be 
adequate. Table I on page iii provides examples of naïve uncertainty propagation formulas 
for some common functions; Table III on page v provides moments about the mean of the 
normal distribution useful for developing higher-order formulas like (2.7). 

Functions of two or more uncertain values 
We now extend our naïve error propagation formulas (2.5) and (2.6) to the case of a 

function involving two uncertain values: z ±σz = f (x ±σx , y ±σy). The obvious extension 
of (2.5) for the expected value is μz = f (μx ,μy). The same caveats apply for cases wherein  
f (μx ,μy) = 0, but not all second partial derivatives of f vanish. Assuming that this is not the 
case, we will use the naïve formula of simply inserting the expected value estimates of x and 
y (our measured values) into the function f (x, y) for z. 



From samples to statistics 

28 
 

An estimate of the variance σ 2
z  is then found using the first terms of a two-dimensional 

Taylor expansion about f (μx ,μy): 
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The partial derivatives are evaluated at (μx ,μy). Taking the expected value of this 
expression and then subtracting μ2

z  = f (μx ,μy)2 to get the variance of z: 

 ( ) ( )2 22 2 2 2 2 22f f f f
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Note that the last term in this expression includes the product of the two first partial 
derivatives 𝜕f/𝜕x  and 𝜕f/𝜕y , not the mixed second derivative 𝜕2 f/𝜕x𝜕y . The covariance σ 2

xy  
will generally be nonzero unless x and y are independent. If x and y are parameter values 
jointly found by fitting a set of experimental data (see Chapter 4), then it will almost 
certainly be the case that the covariance σ 2

xy  is nonzero and should be included in the 
estimation of σz . 

The extension of this result to more than two independent variables is straightforward. If z 
is a function of n uncertain variables then the lowest order, naïve estimates of the expected 
value of z and its uncertainty are given by: 

 Naïve uncertainty propagation for a function of several variables 
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If the arguments are all independent random variables, then the sum over the covariance 
terms in (2.8) is not needed, because the covariances vanish. In this case the uncertainty in z 
is just given by a Pythagorean sum (square root of the sum of the squares) of the 
contributions to it from each of the independent variables (x1, x2, …, xn). 

An uncertainty propagation example 
Measuring the force between two charged plates as a function of the voltage applied 

between them can provide an experimental determination of the permittivity ε of the air 
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separating the plates. The force is set using a laboratory balance to apply an opposing force 
mg to one plate with a small test mass m and acceleration due to gravity g. The applied 
voltage V required to just overcome this opposing force is then measured. The theoretical 
formula relating ε to V and m becomes: 

2.9 
2 12

2
2gd dV

dmr

−
 
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


   

The slope 2/dV dm  relating the square of the applied voltage V to the test mass m is 
determined, along with its uncertainty, from the experiment’s data using the methods 
described in Chapter 4. The other parameters are the plates’ separation d and effective radius 
r. These parameters were carefully measured and their uncertainties estimated using the point 
estimation techniques described earlier. The results of these efforts are summarized here: 
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We must now calculate the experimentally-determined value of ε and its uncertainty. The 
wisest way to propagate uncertainties is to do it incrementally using the propagation tables 
starting on page iii. We first note that the uncertain values on the RHS of (2.9) are raised to 
various powers, so Table I tells us that the various factors have uncertainties of: 
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Now use the formula for the propagation of a product of uncertain values: 
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Applying this to (2.9),  

 2 2 20.00647 0.00065 0.00253 0.007,= + + =


 or just under 1%. 
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Chapter 3  
Likelihood and hypothesis testing 

Assume that you have performed some experiment to determine, for example, qe/me , the 
charge/mass ratio of the electron. Your data values may have been meant to provide direct 
measurements of qe/me  and were analyzed using the point estimation method of Chapter 2, 
or they may have consisted of pairs of values which were then fitted by a function that 
included qe/me  as a parameter. Your objective is to state that you have determined the 
fundamental constant of nature, qe/me , to have some uncertain value Y ±σY, that is, 
qe/me = Y with an experimental uncertainty of σY. This chapter explores the maximum 
likelihood method for determining the result of such an experiment and discusses how the 
quoted uncertainty should be interpreted. 

SELECT IN G AMON G HYPOTHESES USING MAXIMUM L IKEL IHOOD 

To illustrate the concepts of the likelihood function and the maximum likelihood method, let 
us further consider the above example of the experimental determination of a fundamental 
constant of nature. Given the “true” (but unknown) value of some physical parameter Y, one 
may ask what would be the probability density of obtaining an experimentally measured 
value y for that parameter: p(y |Y ) (to be read: “probability density of obtaining y given 
actual condition Y”). If you have a good idea of how the experiment behaves, then you could 
theoretically estimate p(y |Y ) for any particular postulated “true” value of Y. For example, 
the left-hand graph in Figure 3-1 shows possible plots of p(y |Y ) as a function of 
experimental result y (the x-axis) for three different postulated values of the underlying 
parameter Y. A vertical line through our actual experimental result y (on the x-axis) intersects 
the various p(y |Y ) curves at different resulting probability density values, depending on 

  
Figure 3-1: Generating the likelihood function p(y|Y)(Y): (Left) plots of various PDFs for the expected 
distribution of experimental results given three choices Y1, Y2, Y3 for the value of the unknown 
constant of nature Y. The actual experimental result y would have the PDF value shown for each 
choice of Y. (Right) plot of the resulting likelihood function p(y|Y) as the value chosen for Y is varied. 
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how close our experimental result y is to each assumed value for the underlying constant Y. 

Alternatively, with an actual, particular experimental result y in hand, a single plot of the 
expected p(y |Y ) as a function of various postulated “true” values Y could be generated, as 
in the right-hand plot in Figure 3-1. This new, single probability density p(y |Y ) plotted as a 
function of Y (and not y) is called the likelihood function of Y given an experimental result y. 
In our initial example of an experimental measurement of qe/me , the condition Y would be a 
postulated actual value of qe/me , and y would be our measured qe/me .*  

As an example of the determination of the likelihood function, assume that noise in the 
measurement is such that experimental results are expected to be normally distributed around 
the true value Y with standard deviation σ (independent of the value of Y). In this case the 
Gaussian PDF p(y |Y ) will depend on ( y−Y )2, symmetric in y and Y, depending only on the 
magnitude of their difference. Now consider Figure 3-1 again: as the assumed value for Y is 
varied the resulting likelihood function PDF p(y |Y )(Y ) must also be a Gaussian with 
standard deviation σ, but with mean y, as shown in the right-hand plot of the figure.  

max ,Y  the assumed value of Y which maximizes ( | ),p y Y  is then the most likely value for 
Y given our particular experimental result y. In the example shown in Figure 3-1, max .Y y=  
For this simple example of an experimental measurement of e eq m  we would, naturally, 
pick the experiment’s determination of e eq m  as the value we would quote for our result, 
corresponding also to the likelihood PDF’s maximum, max.Y  The result’s uncertainty Y  
would then be the standard deviation of the likelihood PDF, which in this case is the same as 
the measurement distribution standard deviation σ caused by the added noise of the 
measurement process.  

Choosing among different values for Y represents the consideration of different, alternative 
hypotheses, in this case concerning the value of qe/me . By choosing the maximum of the 
likelihood function as the value for Y most consistent with the experiment’s results, we have 
used the maximum likelihood method for selecting among alternative hypotheses or theories 
(in this case, the hypothesized value of Y). In other words, we selected the hypothesis that, if 
correct, would maximize the probability of obtaining our experimental result. 

The maximum likelihood method chooses among alternative hypotheses or competing 
theories by selecting that hypothesis which maximizes the likelihood function of the 
experiment’s result. 

                                                 
* Note that, given our fractional or frequency definition of probability presented in Chapter 1, we do not refer to 
the likelihood function as a converse conditional probability density p (Y | y ) . In our view, this PDF would be a 
Dirac delta function located at the actual, “true” value of Y, independent of any experimental result y. The 
author does not consider the popular Bayesian interpretation of probability, “degree of rational belief,” as 
particularly rigorous (English statistician and philosopher Thomas Bayes, c. 1701–1761), especially in the 
context of the scientific method as used in the physical sciences. Some may counter that Bayesian probability 
theory is no less rigorous than our assumed limiting cases of infinite processes and statistical ensembles. 
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If the various hypotheses differ only by their choices of values for one or more fundamental 
constants or other numerical parameters, then the likelihood function takes the form of a 
surface in a multi-dimensional space of likelihood vs. these parameter values. In this case we 
choose the global maximum of the likelihood function. Our previous example was of this 
type: one fundamental constant qe/me , the alternative hypotheses being the various possible 
numerical values of this constant. 

The main justification for using the maximum likelihood method may simply be to ask, 
“Why not?” Why wouldn’t one choose the hypothesis that made your experimental result the 
most likely one? Another reason is that if the likelihood function is differentiable, then its 
maximum may be found by examining the zeroes of its derivatives, simplifying the math. 
These are both very powerful reasons for using the maximum likelihood method as a 
heuristic for choosing among alternative hypotheses, and this method will form the 
foundation of the methods you will use to analyze your experiments’ results.  

If the likelihood distribution is symmetric about its mean and has a single maximum, then 
its maximum coincides with its mean. In this case the maximum likelihood method also finds 
the experiment’s mean likelihood, which is often considered to be another appropriate 
indicator of the best selection among alternative hypotheses. One must always bear in mind 
that if the likelihood distribution for an experimental result is strongly asymmetric about its 
mean (a skew distribution), maximizing likelihood may not be the wisest strategy. For the 
results expected from undergraduate physics lab experiments this should not be a huge 
worry, because the expected distributions of experimental measurements should usually be 
nearly symmetric about their means. Thus we will continue under the assumption that the 
maximum likelihood method is appropriate. 

CHI-SQUARED AND MAXIMUM L IKEL IHOOD 

Weighted mean of several measurements 
Consider this application of the maximum likelihood method: determine a properly-

weighted average (weighted mean) of several uncertain numerical values. For example, 
assume that there are N independent experimental measurements of qe/me  with various 
uncertainties: yi ±σ i . You wish to combine these measurements to determine a single 
qe/me = (−y ±σ −y), making optimal use of the set of N measurements. We therefore use the 
maximum likelihood method to choose that value for −y  which maximizes the probability of 
having obtained the set of N experimental results yi ±σ i . 

Assume that Gaussian noise in each of the various measurements led to the scatter in the 
observed results, and that the measurements are samples from distributions with a common 
mean μ , corresponding to the actual value of the fundamental constant. Some experiments 
were noisier than others, and the various experimental uncertainties σ i  associated with each 
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of the measurements yi  reflect this fact. Because the noise is Gaussian, the distribution 
probability density for each individual experimental result would be given by the normal 
distribution, equation (1.16). The set of N independent values yi  would then have a joint 
probability density given by the product of their individual densities: 
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In (3.1) we’ve assumed that the variances σ 2
i  associated with the measurements may be 

different, but all distributions have the same mean μ . This common value of μ  in (3.1) is 
what we want to estimate from the data set. Given any hypothesized value for μ , expression 
(3.1) would then give the likelihood function for that choice. We will use the maximum 
likelihood method to choose our best estimate −y  for μ  by maximizing expression (3.1) with 
respect to it.  

Since the expression (3.1) for the joint PDF is differentiable, to find the maximum we 
could take its derivative with respect to μ  and set it to zero: the solution −y  for μ  would then 
be the maximum likelihood value. Rather than doing that calculation directly, however, we 
solve a simpler problem. We realize that the maximum of p (y1, y2, …, yn) is also the 
maximum of its logarithm, so to simplify the math we instead maximize log p (y1, y2, …, yn) 
with respect to μ . Taking the logarithm of (3.1) and finding the value of μ  where its slope 
vanishes: 
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The uncertainty in −y  may be derived from the uncertainties in the yi  using the uncertainty 
propagation formula (2.8). The resulting weighted mean and uncertainty estimates are then: 

 Weighted mean of several independent measurements 
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This, then, is the set of equations we would use to combine the several experimental results 
yi ±σ i  into a maximum likelihood estimate of an underlying physical constant’s value 
Y = (−y ±σ −y) such as a determination of qe/me  from the results of several independent 
measurements. Expressions (3.3) are also a generalization of the point estimate expressions 
(2.2), so they could be used to combine several measurements acquired during a single 
experiment (if those measurements were taken in different ways, which could lead to a 
variety of uncertainty estimates si  for the various data points). 

Chi-squared minimization 
 The above example demonstrated a maximum likelihood calculation. In that example the 

data were assumed to be independent samples of Gaussian random variables, and the 
calculation (3.2) to maximize the logarithm of the likelihood PDF with respect to the 
unknown mean μ  was to find the zero of its derivative with respect to μ : 

 1
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where χ2
(N−1 ) is a sample of a chi-squared distribution with N−1 degrees of freedom, as 

described in the section The χ2 distribution starting on page 14.*  

Because of the minus sign in front of the summation, finding the value of the unknown 
parameter μ  which maximizes the likelihood is clearly equivalent to minimizing χ2.  Thus, 
if the data points are independent and each is a sample of a Gaussian distribution, then χ2 
minimization of the experimental result with respect to an unknown parameter yields the 
parameter’s maximum likelihood value. Chapter 4 examines this point in greater detail. The 
next section discusses the importance of the χ2 distribution when comparing experimental 
results to theoretical predictions. 

Reduced chi-squared tests 
Continue to consider the problem of comparing an experiment’s results to a theoretical 

model. Assume that the noise present in the data is Gaussian, and that you have collected a 
total set of N independent data points yi  and have characterized the noise so well that you can 
assign an associated uncertainty (standard deviation) σ i  to each point. A theory predicts that 
your experimental result should be some value Y. If your data are consistent with the theory’s 
prediction, then it is clear that the common mean of the Gaussian distributions of which your 
data points are samples should be μ  = Y. 

                                                 
* The number of degrees of freedom is one less than the number of data points N because μ  is calculated from 
them, a single constraint reducing the remaining degrees of freedom by one. More will be said about this in 
Chapter 4. 
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Since the variance of the distribution associated with a data point yi  is σ 2
i ,  then if μ  = Y, 

3.4 
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On average, if the theory were correct, the expected value of each data point’s deviation from 
the theoretical prediction Y would be described by (3.4), and the sum of these terms over the 
N data points would be expected to have value N. As discussed in Chapter 1, the χ2 
distribution describes the distribution of a sum of the squared deviations from the mean of a 
set of independent samples of a Gaussian with unit variance. Thus, a sum over the N data 
points of the terms (3.4) would be a sample of a χ2 variate* with N degrees of freedom†, if it 
were indeed the case that μ  = Y: 
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  Chi-squared test calculations 

As was described in Chapter 1, the expected value of the χ2
N  distribution is N, and it has a 

standard deviation of 2N  (expression (1.19) on page 15). Its companion reduced chi-
squared, χ∼ 2

N ,  also shown in (3.5), is defined as χ2
N /N , and is therefore a weighted average 

of the squared deviations of the yi  from their common mean. The reduced chi-squared has an 
expected value of 1 and a standard deviation of 2/ .N  From the characteristics of its 
distribution listed in Table IV on page vi, we would expect a χ∼ 2

N  sample to exceed 1 by 
more than two standard deviations only about 5% of the time.  

Thus the calculations (3.5) provide a useful test of the compatibility of a data set with a 
theory’s prediction. The next chapter will extend this analysis to the more comprehensive and 
important case of comparing the functional relationship between two experimental quantities 
to a theoretical prediction. 

The reduced chi-squared test using (3.5) provides a simple, quantitative comparison of a 
theoretical prediction to an experimental result: if the theory μ  = Y were correct, then 
one would expect that more than 95% of the time, χ∼ 2

N  −1 < 8/N . 

Beware, however! Such comparisons may be trusted only if: (1) the distributions of the 
measurement errors in the yi  are reasonably Gaussian, and (2) we accurately know the 
distribution standard deviations σ i .  

                                                 
* Because each term in the sum is scaled by dividing by its variance, each scaled term has σ 2 = 1. 
† If the hypothesized common mean Y is calculated from the data values, as in the weighted mean example, then 
the number of degrees of freedom ν  = N−1. More will be said about this in the next chapter. 
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If a calculation of (3.5) results in a very small value, χ∼ 2
N  ≪ 1, then the analysis is quite 

problematic. If N > 5, the probability is less than 4% that one would obtain χ∼ 2
N  < 0.2. For 

any N < 40 the probability of a χ∼ 2
N  value more than two standard deviations below 1 is less 

than 1%: 

  2 1 8 1%NP Nχ < − < 
 /  

Even in the limit of very large N, the probability is only approximately 2.25%. Therefore it is 
quite unlikely to obtain an experimental result which closely matches a theoretical prediction 
(more closely than the uncertainties σ i  would indicate). A calculated χ∼ 2

N  ≪ 1 is often due to 
a mistake on the part of the experimenter: either the data point measurements were not 
independent of each other, or the standard deviation estimates σ i  are inaccurate (too large). 
We’ll have more to say about this issue later in the text. 

Comparing competing theoretical predictions 
Again consider N experimental results yi ±σ i , and assume that each result has been 

perturbed by Gaussian noise from the data points’ common mean μ . Given an independent 
theoretical prediction Y (which may not necessarily coincide with μ), then what would be the 
expected mean squared deviation of an experimental result from Y if μ  ≠ Y? In this case: 
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Equations (3.6) show that if the theoretical value Y actually differed from the common mean 
of the yi  distributions, then the weighted mean squared deviation of the data from Y 
calculated using the χ∼ 2 expression in (3.5) is expected to be greater than 1, the difference 
being proportional to (Y− μ)2. In this case the actual distribution of the weighted sum of the 
( yi − Y )2 would be described by a generalized form of chi-squared called the noncentral chi-
squared distribution. 

If there are two or more alternative theories which attempt to predict the result of our 
experiment, e.g.: μ  = X, μ  = Z, or μ  = W, then we may choose between these hypotheses by 
calculating the weighted mean squared deviation of the data from each hypothetical value 
using the χ∼ 2 expression in (3.5). The alternative which yields the smallest value would be 
that which is most consistent with our experiment’s result, in the sense that the hypothetical 
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value with the smallest difference from the actual data distributions’ mean μ would be 
expected to on average have the smallest χ∼ 2 value calculated using (3.5). We may use each 
calculated value as a quantitative score (with a smaller score being better) to rate the relative 
success of each of the various alternative hypotheses. In fact, from the discussion concerning 
the derivation (3.2), we also know that each score would be proportional to the negative of 
the logarithm of the likelihood of each alternative. Picking the minimum score then 
corresponds to using the maximum likelihood method for choosing among the alternative 
theories. 

Note, however, that if the predictions Y, Z, and W are not very different, then our 
experiment must be precise enough to clearly distinguish between them. This can be 
accomplished by reducing the noise (thus decreasing the i ’s) or by collecting more data 
(increasing N). Since the width of the χ∼ 2 distribution decreases proportional to 1 N/  it 
takes, for example, 100 times as many data points to increase an experiment’s precision by a 
factor of 10. Working to reduce the noise may turn out to be a quicker, more cost-effective 
solution. 

Testing the consistency of a set of measurements 
In the earlier example of calculating the weighted mean of a set of N independent 

experimental results yi ±σ i , the assumption was made that all values were samples of 
distributions with a common mean μ. The maximum likelihood method was then used to 
determine an estimate −y  for μ which is most consistent with the measurements, resulting in 
equations (3.3) on page 33 for −y ±σ −y . Now one may question whether this assumption of a 
common mean for all the measurements is warranted. A reduced chi-squared calculation 
using Y = −y  in (3.5) may then be performed to test this assumption. 

Since the estimate −y  is calculated from the set of measurements yi ±σ i , the number of 
degrees of freedom in the resulting χ2 calculation is ν = N−1, as will be explored in the 
next chapter. Consequently, the relevant reduced chi-squared is given by 
χ∼ 2

 N−1 = χ2/(N−1). Given the expected χ∼ 2 distribution if the measurements’ distributions 
share a common mean μ, we would expect that χ∼ 2 −1 < 8/( 1)N −  more than 95% of the 
time. Thus, if χ∼ 2 −1 exceeds this value, then it is likely that one or more of the 
measurements might be samples of distributions which do not share a mean with the others. 
A later chapter will further explore this topic. 

A common situation is to test the consistency of a single pair of results, x ±σx  and y ±σy . 
Using (3.3) and (3.5) to calculate χ∼ 2, realizing that for this case ν = N−1= 1, so χ∼ 2 =χ2, 
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With only one degree of freedom, we would expect that this χ∼ 2 < 4 ≈ 1+ 8  over 95% of the 
time. In fact, for Gaussian x and y with a common mean μ and standard deviations σx  and σy , 



Likelihood and hypothesis testing 

38 
 

respectively, then the difference z = x − y is Gaussian with zero mean and standard 
deviation:  

 2 2
z x ys s s= +   

We would then expect that 95.5% of the time a sample of z would lie within 2σz  of its mean 
of zero. We see that the χ∼ 2 calculation in (3.7) is just z2/σ 2

z ,  so one test that two 
experimental results are consistent (may agree to within the level of their uncertainties) is: 

3.8 2 22 x yx y s s− < +   Consistency check of 2 measurements 

Testing for normally-distributed data scatter 
Our final example of the use of a χ2 calculation is to test whether the scatter in a set of 

measurements is consistent with a Gaussian distribution, so that the sample mean and its 
uncertainty can be expected to provide a maximum likelihood estimate of the underlying 
distribution’s mean. There are actually many such tests, but the one we present here is a 
version of Pearson’s chi-squared test.*  Consider again the point estimation example from 
the last chapter, whose data are repeated in Figure 3-2 below. In the figure’s right-hand graph 
a histogram of the relative frequencies of the various counts/channel values are compared to 
a Gaussian with mean and standard deviation given by the data set sample mean and sample 
standard deviation. How confident may we be that the data are actually consistent with 
samples drawn from a normal distribution? 

  
Figure 3-2: Gamma-ray detector event counts vs. energy channel number (both channel numbers 
and counts are integers for each data point). The right-hand plot is a histogram of counts/channel 
along with a Gaussian representing the sample data mean and the sample standard deviation. 

The idea behind our simple test to answer this question goes like this: given the sample 
mean −y  and sample variance s2 of our N data points, form the normalized sample set 
( yi −−y )/s, which should have mean 0 and variance approximately equal to 1. What is the 

                                                 
* The same English mathematician Karl Pearson (1857–1936) cited in Chapter 1. 
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probability that a set of N random samples drawn from a Gaussian distribution with mean 0 
and variance 1 would be distributed at least as unevenly as the normalized data set? If the 
probability is not too small, then we may be satisfied that the actual data can be modeled as 
drawn from a Gaussian distribution. We use the χ2 distribution to calculate this probability 
as follows: partition the proposed Gaussian distribution into Q quantiles: Q intervals each 
with a total integrated probability of 1/Q. We find the values of y which delimit the quantiles 
by numerically integrating the probability expression (1.1) with the Gaussian PDF (1.16). For 
example, to find its first quartile (Q = 4, with Gaussian μ  = 0, σ2 = 1): 

  11/ 4 ( ) 2 erfc (1/2) 0.67448975
y

p d yx x −
−∞

= → = − = −∫   

The complementary error function is defined as erfc(y) ≡ (2/π)∫y
∞exp(−t)2dt . The points 

{−0.674…, 0,  +0.674…} divide the Gaussian distribution into quartiles, so that a random 
sample drawn from it has probability 1/4 for being included in any particular one of them. 
The general formula for the boundary between two quantiles is given on page vi. 

The N data points are expected to be evenly spread among the Q quantiles of the parent 
distribution. The actual numbers of points found in a quantile will, of course, vary randomly, 
distributed according to a binomial distribution with N trials and success probability 1/Q. 
Each quantile should then contain an expected number (1/Q) N of the data points with 
variance (1/Q) (1 − 1/Q) N. *  Now we have collected all of the ingredients needed to 
perform a χ2 analysis of the actual distribution of the data points over the Q quantiles of the 
candidate Gaussian: 

3.9 ( 3)

2
2 2

1 1

( ) 1 ( )(1 )(1 1 ) ( 1)Q

Q Q
i

i
i i

N N Q QN NQ Q N Q Nχ −
= =

−
= = −

− −∑ ∑
/

/ /   Quantile χ2 test  

The sum is over the quantiles, with Ni as the count in the ith quantile. Q− 3 degrees of 
freedom for this χ2: Q quantiles, but N, −y , and s2 (used to define or normalize the Gaussian 
distribution) are derived from the data, providing 3 constraints.  

With Q = 4 for the example shown in Figure 3-2, N = 88 and the quartile counts are 19, 
26, 21, and 22. Equation (3.9) then gives χ2 = 1.576. With 1 degree of freedom χ2 > 1.576 
has the fairly high probability of 21% (this probability is called the p-value of the test), so 
one may reasonably conclude that the actual data points are not inconsistent with samples of 
a Gaussian. A common rejection criterion is that if the test’s p-value is 5% or less, then it is 
very unlikely that the data are consistent with the Gaussian distribution. With one degree of 

                                                 
* Many references would instead use the Poisson distribution, discussed in Chapter 6, to estimate each quartile’s 
variance. The Poisson distribution approximates the binomial distribution only in the limit that the success 
probability becomes small. The Poisson distribution’s variance is equal to its mean, which would be N/Q. For 
the quartile case, this is a 33% error over that of the binomial distribution. In the limit that Q is large, so that the 
probability of a sample falling into any particular division becomes small, the binomial distribution is well-
approximated by the Poisson distribution. 
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freedom (using quartiles), this would be the case if χ2 > 3.84. In many cases, a particular 
choice for Q may result in a small p-value, whereas for another choice the p-value is much 
higher. It is therefore probably a good idea to perform this test using at least a few different 
values for Q. Table V on page vii provides quantile boundaries and limiting χ2 values for 
various numbers of quantiles. 

INT ERPRETI NG T HE UNCERTAINT Y OF A  RESULT 

The standard deviation of the likelihood distribution determines the uncertainty in our 
experimentally measured value of a physical constant. Once we have decided that the 
physical constant has some uncertain value Y±σY, the question remains: how exactly should 
one interpret the uncertainty σY? Yet again consider our example of the experimental 
determination of the electron charge/mass ratio, qe/me . Is σY the standard deviation of the 
probability distribution of possible qe/me  values around our estimate Y? Is there such a thing 
as a “probability distribution” of the value of a fundamental constant of nature?  

As of this writing, the NIST (National Institute of Standards and Technology) website* 
gives the experimentally-determined value for qe/me  to be: 

(1.758 820 024 .000 000 011)− ± 1110×  coulomb/kilogram 

The NIST website describes their quoted uncertainty as the estimated standard deviation of 
the determination of qe/me  = Y. It goes on to define the meaning of this phrase (their 
uncertainty u (y) ≡ σY in our notation): 

If the probability distribution characterized by the measurement result … is approximately 
normal (Gaussian), … then the interval … implies that it is believed with an approximate level 
of confidence of 68% that Y is greater than or equal to y−u (y), and is less than or equal to 
y +u (y), which is commonly written as Y = y ±u (y).†   

The problem with this definition, at least for a statement about the value of a fundamental 
constant of nature, is that at best it may be poorly worded and potentially ambiguous. The 
actual value of qe/me  either lies somewhere within the stated interval (and therefore has 
probability P[ Y = y ±u (y)] = 1 ), or it doesn’t (with probability P[ Y = y ±u (y)] = 0 ), so 
what is the correct interpretation of “level of confidence of 68%?” 

A more precise interpretation of the stated uncertainty addresses the experimental 
methods used to measure of the constant: one should expect that approximately 68% 
of repeated, similar experiments should yield a value of qe/me  within ±σY of the true, 
but unknown, value of the constant.  

                                                 
* http://physics.nist.gov/cgi-bin/cuu/Value?esme|search_for=atomnuc  
† http://physics.nist.gov/cgi-bin/cuu/Info/Constants/definitions.html  

http://physics.nist.gov/cgi-bin/cuu/Value?esme|search_for=atomnuc
http://physics.nist.gov/cgi-bin/cuu/Info/Constants/definitions.html
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This interpretation is an inference about the expected scatter in the results of similar 
experiments, and not about the probability that the actual value of qe/me  falls within some 
range. It addresses the standard deviation of the likelihood function used to choose that value 
for qe/me  considered to be most consistent with available experimental results. 

Given the methods used to determine qe/me , the resultant scatter about the true value due 
to various sources of measurement error is expected to be characterized by a standard 
deviation of σY. If the distribution of the errors is Gaussian about a mean equal to qe/me , 
then we would estimate that approximately 68% of a large set of similar experimental results 
could be expected to lie within ±σY of the actual value of qe/me . Thus the likelihood PDF 
derived from the available experimental results would also be Gaussian with maximum (and 
mean) at qe/me  = Y and with standard deviation σY. The area under the likelihood PDF 
within ±σY of the experimentally-determined value would then also be 68%. That is the 
actual meaning of a 68% confidence interval about the experimentally-determined value; 
±2σY would represent a 95% confidence interval. 
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Chapter 4  
Curve fitting and optimizing free parameter values 

The last chapter demonstrated that for data whose random errors are independent and 
normally-distributed, a maximum likelihood estimate of the distribution mean may be found 
using chi-squared minimization. That result may be generalized to more complicated and 
important problems of experimental data analysis: selecting that theory which best describes 
the functional relationship between measureable quantities, or optimizing a given theory’s 
free parameter values to best match an experiment’s results. This chapter addresses some of 
the practical mathematical details of this approach and gives some pointers on how to 
properly set up the optimization process and interpret its results. 

CHI-SQUARED MINIMIZAT ION 

Functions with several parameters; the degrees of freedom of χ2 
Assume that a theory predicts a certain algebraic functional relationship between two 

experimentally accessible quantities: y = f (x). Assume further that the theoretical 
relationship between x and y depends on M numerical parameters requiring experimental 
determination (they are free parameters of the theory). We label these parameters as 
a1, a2, …, aM, and restate the theory as y = f (x; a1, a2, …, aM), making the dependence on 
these parameters explicit. Note that the values of the parameters are not in principle to be 
considered to be functions of the variables x and y, but rather to define the numerical 
relationship y = f (x). The M parameters must be independent: we can’t replace them with a 
smaller set of parameters and still maintain the same relation y = f (x). Here are a couple of 
examples from undergraduate laboratory experiments, each expressed as functions containing 
two free parameters: 

The rate of decay of a radioactive 
sample decreases exponentially with 
time. 

0( ) exp ( / )r t r t t= −  r0 :  decay rate at time 0  
τ  :  mean lifetime 

The square of the magnetic field 
required to bend the trajectory of a 
high-speed charged particle along a 
fixed-radius path varies quadratically 
with the particle’s kinetic energy. 

( )
2

2 2
( )
( ) 2

B T
qR T mT−

=

+
 

qR : charge-path radius 
product 

m  :  particle rest 
energy 

 

Assume that an experiment is designed to test the relation y = f (x; a1, a2, …, aM), and that 
the experiment’s resulting data consists of N ordered pairs of measured values (xi , yi) 
collected as the experimental conditions are varied. Assume further that each pair has an 
associated, experimentally-determined standard deviation estimate σ i  due to random, 
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independent, Gaussian noise in the measurements (how to determine σ i  is discussed later in 
this chapter). Construct a χ2 variate which sums the differences between the measured data 
and the theory’s predictions, each term weighted by its variance: 

4.1 ( )1 2
( )

2
2

2
1

( ; , , , )M
N M

N i i

i i

y f x a a a
−

=

−
= ∑



χ
s

  χ2 for y = f(x) 

The individual data point errors must be independent! 

 The data point variances σ 2
i  in the χ2 expression (4.1) represent the expected scatter 

(noise) in the various measured data points (xi , yi). It is quite important that the errors 
in the data point values are independent, so that the covariances between different 
data points all vanish (otherwise, the provided expression for χ2 is incorrect). Errors 
that may have been introduced into the data points which are not independent (such 
as a calibration error in an instrument used to collect the data) must not be included in 
the σ 2

i  estimates of expression (4.1). These additional sources of correlated errors are 
systematic, and will be dealt with in a completely different manner (see Chapter 5: 
Dealing with systematic errors). 

The number of degrees of freedom of the χ2 variate in (4.1) is N−M and not simply N as 
was often the case in the previous chapter. The chi-squared minimization process to optimize 
the M parameter values uses the measured data point values (xi , yi). The resulting 
expressions for the optimized parameter values provide M equations of constraint, reducing 
the number of degrees of freedom. Alternatively, because we use the actual acquired data 
values while minimizing the sum (4.1), the residuals yi  − f (xi; a1, a2, …, aM) can be made a 
bit smaller on average than their corresponding σ i  values. It turns out that for normally-
distributed residuals the sum then has an expected value of N−M, rather than N. This implies 
that the χ2 variate resulting from the minimization of the sum has N−M degrees of 
freedom.* The corresponding reduced chi-squared variate χ∼ 2 is then χ2/(N−M):  

4.2 ( )1 2
( )

2
2

2
1

( ; , , , )1 M
N M

N i i

i i

y f x a a a
N M−

=

−
=

− ∑


χ
s

  Reduced χ2 for y = f(x) 

                                                 
* Note the connection between (4.1) and our previous solution for the specific case of estimating a distribution’s 
mean and variance from a set of N data points given in expressions (2.2) on page 18. In that case the model for 
the y values was simple: y = f(x) = constant = μ. The single free parameter in the function was μ, and the 
number of degrees of freedom was therefore N−1.  All points were assumed to be samples of a single 
distribution, so all the σ i  were equal to the distribution’s unknown standard deviation σ . This approach is 
discussed further in the next two sections. 
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The set of values for the parameters which minimizes (4.1) and (4.2) is called the least-
squares solution for the parameters. If the N residuals yi  − f (xi; a1, a2, …, aM) are 
normally distributed, then this set of values will be the maximum likelihood solution for 
the parameters a1, a2, …, aM. 

Linear regression 
If the function f (x; a1, a2, …, aM) is a linear combination of the M parameters aj , that is, it 

is of the form shown in equation (4.3), then an algebraic expression for the minimum of the 
sum (4.1) for χ2 can be found (each of the functions gj(x) in (4.3) must be independent of 
all of the M parameters). 

4.3 1 2
1

( ; , , , ) ( )M

M
j j

j
f x a a a a g x

=
= ∑   Linear combination of the aj 

In this case the optimization of the M parameter values using (4.1) is a form of linear least-
squares minimization or linear regression, and its solution is an exercise in linear algebra. 
Assuming that f (x; a1, a2, …, aM) has the form (4.3), setting the partial derivative of the 
expression for χ2 in (4.1) with respect to one of the M parameters aj  to 0 results in the 
equation:* 

 Linear regression system of equations 

4.4 2 2
1 1 1

1 1( ) ( ) ( )
M N N

k j i k i j i i
k i ii i

a g x g x g x y
s s= = =

 
= 

  
∑ ∑ ∑   

There will be M such equations (for j = 1…M), and the left-hand side of each is a linear 
combination of the M parameters, whereas the right-hand side is independent of the 
parameters. This system of M linear equations in the M unknown parameters provides a 
unique solution for the set of parameter values which minimizes χ2, as long as the 
parameters are independent (the determinant of the coefficients of the ak  doesn’t vanish).  

The simplest example of a linear regression is the case wherein the theory predicts that the 
yi  data should all equal the same, but unknown, constant a, independent of the xi  values: 
y = f (x) = a. Noise in the measurements, of course, spoils this perfect scenario, and the 
uncertainties in the various yi  measurements are given by the σ i . In other words, the theory 

                                                 
* In deriving (4.4) we assume that the data point variances σ 2

i  are constants (independent of the parameter 
values). This will be true if they are associated with measurements of the yi  values only; the corresponding xi  
values are considered to be equivalent to experimental “control settings” which have no associated 
measurement uncertainty. This assumption leads to what is commonly called the ordinary weighted least-
squares method. We relax this restriction later in the chapter. 
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predicts that the distributions of the yi  share the common mean a. Applying the single linear 
regression equation for a given by (4.4) with the single function g(x) = 1,  

 
2 2 2 2

1 1 1 1

1 1 1( ) ( ) ( )
N N N N

i
i i i i

i i i ii i i i

ya g x g x a g x y
s s s s= = = =

 
= = = 

  
∑ ∑ ∑ ∑   

 or, simply:  
2 2

1 1

1N N
i

i ii i

ya
s s= =

   
= ÷   
      
∑ ∑   

This is the formula (3.3) for the weighted mean of a set of N experimental results derived in 
Chapter 3. 

Next consider the only slightly more complicated example of a two-parameter, linear 
model for the set of data: y = f (x) = a1+a2x. From (4.3) we have g1(x) = 1 and g2(x) = x. To 
keep things nice and simple, assume that the data point uncertainties are all equal: σ 2

i  = σ2. 
Thus the σ 2

i  divide out of the linear regression system of equations in (4.4), and the pair of 
coupled equations for a1 and a2 may be written in matrix form and solved, giving (4.5): 

4.5 
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2

2

1 22 2 2 2
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( )

( ) ( );
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i ii i
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N x a y
a x yx x

x y x x y N x y x ya a
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Σ  Σ   
=      ΣΣ Σ     

Σ Σ −Σ Σ Σ −Σ Σ
= =

Σ − Σ Σ − Σ

  

How the uncertainties in the parameter values are determined is addressed in a later section. 

Estimating the uncertainty from experimental data; unweighted least squares 
If the uncertainties σ i  of the data points are all the same, σ i = σ , then the common variance 

may be factored out of the χ2 expressions (4.1) and (4.2). The resulting problem is that of 
the minimization of a simple sum of the squared residuals, Σ( yi  − f (xi))2, known as the 
unweighted least squares problem. This was the case for the simple linear regression 
example in the last section leading to the solution (4.5). Because the uncertainty σ  can be 
factored out of the sum, the χ2 minimization and the resulting optimized parameter values 
are independent of the value of σ . 

Unweighted least squares problems most often arise in situations wherein the variance of 
the noise-induced scatter in the individual yi  measurements is unknown, but is assumed to be 
the same for all of them. At the same time it is assumed that any noise in the xi  
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measurements is completely negligible.* If the optimized model function f (x; a1, a2, …, aM) is 
consistent with the data, and the noise in the yi  is Gaussian, then the residuals yi  − f (xi) will 
be normally distributed with mean 0 and variance determined by σ . Thus the optimization 
can not only provide maximum likelihood estimates of the parameter values, but also 
provides an unbiased estimate of σ . 

Under the circumstances outlined in the previous paragraph, the expected value of χ2 is 
N−M, so the expected value of σ2 must be: 

4.6 ( )1 2
2 2 2

1

1E[ ] ( ; , , , )M

N
i i

i
s y f x a a aN Ms

=
≡ = −

− ∑    Estimated variance of the yi 

When evaluating (4.6), the parameters take on their optimized values. This equation provides 
a generalization of the sample variance defined by expression (2.1) on page 22. We can 
estimate the uncertainty in this estimation of σ  by generalizing (2.3): 

4.7 1
2( )

s
s N M
s

−
~   Accuracy of the uncertainty  

To reiterate, the basic idea behind the estimations in (4.6) and (4.7) is that if the model is 
correct and the noise is Gaussian, then the reduced chi-squared χ∼ 2

 N−M  is expected to be 1. 
Assuming that it is in fact equal to 1 and solving for the corresponding variance σ2 then gives 
these expressions. The same caveat applies to this uncertainty estimate as did that of (2.3), 
namely that the substitution of s2 for E[σ2] may be quite inaccurate if the number of degrees 
of freedom is small. Using uncertainty propagation, we know that the fractional uncertainty 
in the variance σ2 will be twice that of (4.7). 

Nonlinear regression; the Hessian matrix of χ2 
Often the theoretical model function f (x; a1, a2, …, aM) in (4.1) is not of the form (4.3), 

making it is a nonlinear function of one or more of the parameters. For example, consider 
f (x) = a1exp(−a2x) + a3. In most such cases an analytic solution for the parameters cannot be 
found, and the χ2 minimum must be determined numerically. If χ2 is a differentiable 
function of each of the M parameters aj  in a region about its minimum, then it must be the 
case that all of the M first partial derivatives (𝜕/𝜕aj)χ2 vanish at that minimum. Now, 
f (x; a1, a2, …, aM) is a real-valued function of its real-valued argument and parameters. If it is 
twice-differentiable at the χ2 minimum, then the Hessian matrix† H of χ2 will be real-

                                                 
* An ordinary least squares problem. 

† The Hessian matrix H of a scalar function g (a1, a2, …, aM) is the square matrix formed from all of its 
second partial derivatives: Hjk  = (𝜕2/𝜕aj𝜕a k ) g . It is named for the 19th century Prussian mathematician 
Ludwig Hesse. 
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valued and symmetric at that minimum. Therefore H will have only real-valued eigenvalues. 
At a minimum (local or global) of χ2, H must be positive definite, that is, its eigenvalues 
must all be positive.* These conditions on the first and second partial derivatives of χ2 with 
respect to the parameters characterize the nonlinear least-squares minimization problem and 
form the basis of algorithms to solve it. Additionally, the Hessian matrix evaluated at the χ2 
minimum is closely related to the uncertainties in the optimized parameter values, as we 
investigate later in this chapter. 

It is not unusual for there to be several local minima of χ2, as well as local maxima and 
saddle points. The solver must be prepared to evaluate the Hessian matrix H at each 
candidate critical point (a point where the partial derivatives (𝜕/𝜕aj)χ2 all vanish). Mutual 
independence of the parameters implies that the determinant of the Hessian matrix, det(H), 
will not vanish at a critical point. The value of the determinant of H is equal to the product of 
its eigenvalues, and Tr(H), the trace of H (the sum of its diagonal elements), equals the sum 
of its eigenvalues. If either det(H) < 0 or Tr(H) < 0, then at least one of the eigenvalues must 
be negative, implying that the critical point cannot be a minimum. If both det(H) > 0 and 
Tr(H) > 0, however, the eigenvalues must still be checked to ensure that they are all positive. 
The solver should also be careful not to select a local minimum rather than the global 
minimum of χ2. 

DETERMINI NG σ i
2  T HE  FROM X  AND Y  UNCERTAINT IES 

From (4.1) it should be clear that each of the N residuals in the χ2 sum is weighted by its 
variance, so that more uncertain (noisy) data points are weighted less than those with smaller 
uncertainties. Thus χ2 minimization will tend to favor points with small uncertainties when 
optimizing the parameter values in the theoretical model function y = f (x; a1, a2, …, aM). It is 
important that these uncertainties be properly calculated so that the data points are properly 
weighted and that the resulting χ2 value is accurately determined. 

The uncertainty σ i  in each term of the χ2 sum represents the uncertainty in the 
corresponding residual yi  − f (xi) introduced by noise (lack of repeatability) in the 
experimental measurement of (xi , yi). The random noise in these measured quantities, 
characterized by their uncertainties σxi  and σyi  and their covariances σ 2

xiy i , propagate 
through the residual expression to produce the uncertainty σ i . We can use the naïve error 
propagation formula (2.8) on page 28 to calculate the residual’s variance σ 2

i  from the 
variances in x and y:  

                                                 
* If H is positive semidefinite, i.e. has at least one vanishing eigenvalue, so that det(H) = 0, then the critical 

point may be a minimum. In this case, however, the parameters are not all independent, at least in a small 
neighborhood of parameter space containing that critical point, so one or more of them can be eliminated 
without changing the function f (x). This should be accomplished, and the minimization repeated. 
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4.8 
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The derivatives of f(x) in (4.8) should be evaluated during χ2 minimization at x = xi  using 
the current estimates of the parameter values a1, a2, …, aM. We shall spend some time 
analyzing the implications of this expression on our understanding of the χ2 minimization 
process. 

Ordinary least-squares 
In many experiments, only one of the two numerical values of a data point pair (xi , yi) is 

actually measured; the other may be a value set on some instrument control or otherwise 
established as part of the experiment’s procedure. In this case, only the measured value will 
have an uncertainty associated with it, because observable scatter in the data from multiple 
samples will only be present for a measured quantity. Of course, there may be an error in the 
value set for the unmeasured quantity, but when minimizing χ2 we want the uncertainties σ i  
to reflect random, independent fluctuations in measured quantities. 

If the only measured member of a data point pair is yi , then σ 2
i  = σ 2

yi . This variance is 
independent of changes to the function f (xi) as the χ2 minimization proceeds, so the weight 
of each residual term in the χ2 sum remains constant. This situation results in what is called 
the ordinary least-squares problem, and very efficient and accurate numerical algorithms are 
available to solve it. It can be shown that the results of this procedure will provide minimum-
variance, unbiased estimates of the function parameters a1, a2, …, aM, at least if the noise 
fluctuations in the yi  are Gaussian. This is the best-case scenario for the maximum likelihood 
analysis of experimental data. 

Uncertainties in the xi: total least-squares 
The theoretical physical relationship between the experimentally accessible quantities x and 

y is represented by the model function y = f (x), but this expression doesn’t necessarily 
require that x be an “independent” experimenter control input which then generates the 
“dependent” response y. Rather the function just expresses a numerical relationship between 
the quantities x and y, without assigning “cause” and “effect.” If the only measured value of a 
data point pair (xi , yi) is xi , resulting in the associated uncertainty σ 2

xi , then the wisest course 
of action is to swap the roles of x and y in the residual calculations: xi  − f −1(yi). The inverse 
function f −1(y; b1, b2, …, bM) will involve a set of M new parameters b1, b2, …, bM which will 
generally not be related in a simple fashion algebraically to the ones in the original function 
f (x; a1, a2, …, aM). The advantage of this approach, however, is that the variances of the 
terms in the χ2 sum remain constant throughout the minimization, leading again to an 
ordinary least-squares problem. 
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If some other overriding consideration requires that the χ2 residuals remain in the original 
form yi  − f (xi; a1, a2, …, aM), then by (4.8) the variances become σ 2

i  = (df/dx)2σ 2
xi , and 

these are now functions of the parameters. As the χ2 minimization proceeds and the 
estimates of the parameter values are adjusted, not only do the term weights vary, but the 
term partial derivatives with respect to the parameters must include factors involving 
(𝜕/𝜕aj)σ 2

xi . This added complication can be quite serious, and leads to the use of so-called 
total least-squares algorithms.*  

There are two important consequences which must be considered when the total least-
squares approach is chosen: 

(1) Even if the model function y = f (x; a1, a2, …, aM) is linear in the M parameters as in 
(4.3), χ2 minimization will require an iterative, nonlinear algorithm rather than a 
closed-form, algebraic solution characteristic of linear least-squares problems. 

(2) Algorithms are not guaranteed to find minimum-variance, unbiased estimates of the 
function parameters a1, a2, …, aM, even when the noise is Gaussian. In fact, the 
resulting parameter estimates are often biased, and their uncertainties are often 
underestimated. 

Uncertainties in both xi and yi 
If both of the data point values in (xi , yi) are measured, then noise will add fluctuations to 

each of them, resulting in nonzero estimates for both σ 2
xi  and σ 2

yi . Thus the full expression 
(4.8) must be used to determine σ 2

i , and a total least-squares algorithm will be needed to 
minimize χ2 (with all of its disadvantages, as outlined above). An extra, very important 
complication arises in this case, however, because of possible correlation in the fluctuations 
of x and y, leading to a nonzero covariance σ 2

xiy i . 

To illustrate the problem caused by a nonzero covariance, consider this experimental 
situation: x is a control variable set to various values as the experiment proceeds; the physics, 
as modeled by the equation y = f (x), predicts that the observed value for y will vary in 
response to changes in x (i.e. changes in x result in changes in y, as predicted by the model 
f (x) → y). Of course, as with any experiment, random variations introduce noise into the 
experiment, so fluctuations in the values of measured quantities are evident as multiple 
samples are collected. Assume that as the control variable x is adjusted, its value is then 
measured along with measurements of y, generating the data points (xi , yi). Since both x and 
y are measured, each will show fluctuations and have associated variances.  

Now the problem of correlation rears its ugly head: is the observed noise in x introduced 
solely through its measurement, or does it indicate that the underlying control value x is 
actually fluctuating? If x really is varying, then the physics f (x) → y would imply that y 

                                                 
* Other approaches may also be used, such as various models of measurement error methods. 
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should also vary in response. To help understand the situation, we may model the noise 
introduced into the experiment’s data as shown in Figure 4-1. 

If noise is independently introduced into each measurement chain only (leaving the 
underlying control value x alone), then the fluctuations observed during measurements of x 
and y will originate in independent sources and therefore be uncorrelated. In this case, 
σ 2

i  = σ 2
yi  + (df/dx)2σ 2

xi , and a total least-squares algorithm is appropriate.  

If, on the other hand, a significant fraction of the variance observed during measurements 
of x indicate fluctuations of the underlying control value input to the system, then these 
fluctuations will generate corresponding fluctuations in y. To be more specific, assume that 
the only significant noise introduced to the determination of x in the experiment illustrated in 
Figure 4-1 is at the point c, and that the noise introduced at point a is negligible. Assume 
further that the function f (x) correctly describes how y responds to the input x. Now these 
fluctuations in x, carefully measured and correctly described by its observed variance σ 2

x , 
cause corresponding fluctuations in y, which add to the independent fluctuations introduced 
at point b. The overall fluctuation in y is also correctly measured and described by σ 2

y . 
Because of the noise injected at c, the instantaneous fluctuations in x and y away from their 
respective means are strongly correlated. Let the instantaneous noise fluctuations at c and b 
be designated 𝛿c  and 𝛿b .  If xi  and yi  data are measured nearly simultaneously, so that any 
particular noise fluctuation in the value of x affects both the observed values of xi  and yi  for 
any particular data point (xi , yi), then (to lowest order, with independent errors 𝛿c  and 𝛿b), 
we have (see next page): 

 

Figure 4-1: Noise added to measurements of x and y may or may not lead to correlated errors, 
depending on where the noise sources are located in the experiment’s causal chain. In this example, 
the physics requires that changes in x result in changes in y through some functional relationship f (x ) 
→ y. Noise added at points a and b independently affect the measurements xi and yi, but noise added 
at c affects both measurements in a correlated manner.  

x f(x)

xi yi

a b

c
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Because the function f (x) correctly describes the functional relationship between the values 
of x and y, at any instant yi  = f (xi) + 𝛿b ,  and the residual yi  − f (xi) =  𝛿b .  Thus the above 
calculation correctly results in σ 2

i  equal to the variance of the residual, which is just the extra 
noise injected at point b during the measurement of y; in this case the noise in x injected at c 
does not contribute to errors in the residuals and must be subtracted from the observed σ 2

y . 
Already we see that correct calculation of the data point variance can be subtle. 

If the measurements xi  and yi  are not performed nearly simultaneously, then the noise 
signal 𝛿c  injected at point c in Figure 4-1 will have time to change to some different value 𝛿 ′c  
between the two measurements. If the interval between measurements of xi  and yi  is long 
enough, the instantaneous fluctuations 𝛿c  (affecting xi) and 𝛿 ′c  (affecting yi) will be 
uncorrelated. Consequently, 
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In this case, the full contributions of the observed x and y variances must be included in σ 2
i . 

If the x value is not measured, but a nominal value is used for xi , then the problem becomes 
an ordinary least-squares minimization, and σ 2

i = σ 2
yi . Thus, depending on the scenario 

established by the experimental setup, the value to be used for σ 2
i  can be hard to determine. 

Equation (4.8) for the residual variance evaluates to: 

4.9 
2

2 2 2 ; 1 1
iiy xi

df
dx

 = + − ≤ ≤ 
 

       

The value of the coefficient ρ  of the σ 2
xi  term in (4.9) can be positive or negative and must be 

calculated following a careful study of exactly how the xi  and yi  are measured. For most 
situations encountered in undergraduate physics experiments, the x and y values are not 
measured simultaneously, and their observed fluctuations are uncorrelated. In this case the 
appropriate calculation of σ 2

i would be (4.9) with ρ = 1. This is the choice assumed by the 
CurveFit data analysis package when both x and y uncertainties are present. 

Derived values are used for x and y 
In some cases it may be convenient to calculate the quantities x and y used in χ2 

minimization from some other pair of actually measured quantities u and v, whose noise 
fluctuations are assumed to be independent. Thus xi = x(ui , vi) and yi = y(ui , vi), for 
functions x(u , v) and y(u , v). How is σ 2

i  then determined from the experimental 
uncertainties in ui  and vi? For example, an experiment may measure the magnetic field 
strength B ±σB  needed to focus high-energy electrons on a detector and the corresponding 
kinetic energy T ±σT  of the focused electrons. The most convenient representation of the 
theory relating B and T may be (B2/T) = f (T), where f (T) is a first-order polynomial 
function of T. The experimenter then chooses xi = Ti  and yi = (Bi

2/Ti) as the data variables 
used in the least-squares procedure. 

χ2 calculated using (4.1) with the derived data pairs (xi , yi) and the model y = f (x) should 
be the same as that calculated using the actual data pairs (ui , vi) and the corresponding 
model v = g (u), where g (u) is implicitly defined by y = f (x): y(u , g (u)) = f (x(u , g (u))). 
Without proof, it turns out that the χ2 term for yi  − f (xi; a1, a2, …, aM) has σ 2

i  given by: 

  
2 2

2 22
i iv ui

y df x y df x
v dx v u dx u
∂ ∂ ∂ ∂   = − + −   ∂ ∂ ∂ ∂   

   



  Physical Data Analysis 

53 
 

Now we can form the correct expression for χ2 in the case where x and y are derived from 
the measured variables u and v (whose noise errors are assumed to be independent). The 
derivatives are all evaluated at (xi , yi). Because σ 2

i  involves df/dx , a total least-squares 
algorithm must be used to minimize χ2: 
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  x = x(u,v);  y = y(u,v) 

Returning to the example in which magnetic field strength B and electron kinetic energy T 
are measured, but for the analysis (xi , yi) =  (Ti , Bi

2/Ti), then the χ2 terms become: 
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The expression for σ 2
i  may alternatively be put into the form (4.8) by propagating 

uncertainties using (2.8) and the functions x(u , v) and y(u , v) to determine σ 2
xi , σ

2
yi , and 

σ 2
xiy i . The results for these variances are: 
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Clearly, since x and y both are functions of the same two measured quantities u and v, their 
covariance will generally be nonzero. Substituting the above expressions into (4.8) and 
simplifying will result in (4.10), as it must.  

PARAMET ER UNCERTAINTIES  AND T HE COVARIANCE MATRIX 

If the errors in the measurements are Gaussian, then, as discussed previously, minimization 
of χ2 in (4.1) provides the maximum likelihood solution for the values of the parameters a1, 
a2, …, aM. To determine the expected uncertainties in the estimates of the parameter values, 
we consider the PDF of the experiment’s likelihood function as the hypothesized parameter 
values are varied: pL(〈data set〉|〈parameter values〉). Consider first the case of a single 
parameter value: χ2 = χ2

(N−1 )(a). If the errors are Gaussian, then so will be the likelihood 
function, at least for a small range of values of the parameter a around its maximum 
likelihood value a0. Therefore, the likelihood PDF will vary as: 
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When |a − a0| = σa , the exponent in (4.11) will equal −1/2, and  

 L 0
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But the likelihood PDF may also be determined from the independent data point values as 

 L

2
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With L 0 L 0
1/2( data set | ) ( data set | ),ap a e p a −〈 〉 ± = 〈 〉  then χ2(a0 ± σa) = χ2(a0) + 1. 

Thus it must be the case that χ2(a0 ± σa) = χ2(a0) + 1, and σa  may be determined by 
equating it to the Δa required to increase χ2 by 1 above its optimized, minimum value. 

This method is also appropriate if there are several parameters a1, a2, …, aM. In this case, 
however, χ2

(N−M )  must be continually minimized with respect to all of the other M−1 
parameters as the parameter whose σ  is sought is varied. In this way the likelihood function 
remains a function of the single parameter being evaluated, because the other M−1 
parameters then become implicit functions of it. An example to illustrate the results of this 
process is shown in Figure 4-2 for the case of a two-parameter χ2 minimization: if, for 
instance, χ2

(N−2 )  were not kept minimized with respect to a2 as a1 was varied, then σa1  
would be identified with the points where the Δχ2  = 1 contour crosses the a1 axis rather than 
with the correct, larger σa1 value associated with the projection of the contour onto the a1 
axis. This figure is sometimes referred to as the error ellipse for the two parameter estimates. 
The next subsection will address this issue in more detail. 

 

Figure 4-2: A hypothetical example of the 
correct determination of the uncertainties 
of two parameter values. The axis origin is 
at those values for a1 and a2 which mini-
mize χ2. The elliptical contour shows the 
locus of parameter value combinations 
which increase χ2 by 1 from its minimum 
value.  The proper estimates of the param-
eter uncertainties are at the extremes of 
the contour as projected on the a1 and a2 
axes, and not where the contour crosses 
each axis.  

The Error Ellipse 
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The covariance matrix and its relationship to the Hessian matrix 
Consider a case in which the theoretical relationship between x and y is expected to be a 

simple proportion: y = f (x) = ax. The expression (4.1) for χ2 has f (xi) = axi , which is 
clearly linear in the single unknown parameter a. χ2 is a quadratic function of a, and the χ2 
minimization problem becomes a simple linear regression, with (4.4) reduced to a single 
equation for the value a0 at which (d/da)χ2= 0: 

4.12 
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Since (4.12) is a simple quadratic in a, (d 2/da2)χ2  is everywhere constant and is equal to 
twice the coefficient of the quadratic term in (4.12). Note that this term is also the coefficient 
of a0 in the equation above and is also nonnegative. Thus this equation does indeed identify 
the unique minimum of χ2 with respect to the single parameter a. The uncertainty of the 
value a0 is given by the Δa = a − a0, which makes Δχ2(Δa) =χ2(a0+Δa) −χ2(a0) = 1. 
From (4.12) the equation for Δχ2(Δa) is: 
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The variance of the estimated value of a single fit parameter using linear regression is twice 
the reciprocal of the second derivative of χ2 with respect to the parameter. This result may 
be extended to the multi-parameter fit situation using a bit of straightforward but somewhat 
messy linear algebra. The results are shown in (4.14): 

 Covariances of the fit parameter estimates from χ2 minimization  

4.14 12 −=Σ H   
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The Covariance Matrix 

The covariance matrix (or error matrix) of the fit parameter estimates is given by twice 
the inverse of the Hessian matrix (evaluated at the χ2 minimum). The diagonal 
elements of this matrix are the individual parameter estimate variances. The off-
diagonal elements are the covariances between the various parameter pairs. 

Use of the inverse of the Hessian matrix to determine the parameter uncertainties 
ensures that they are calculated properly (Figure 4-2 on page 54).  

The Hessian matrix is especially easy to calculate for the ordinary linear regression 
problem, equation (4.3) on page 44 with σ 2

i  = σ 2
yi . In (4.4) the array of coefficients of the M 

parameters (k = 1…M) in the M equations ( j = 1…M) form a M × M matrix which you can 
easily show to be half the Hessian matrix H of χ2

( N−M ) . Using (4.14), it must be the case that 
the covariance matrix of the parameter estimates Σ  is the inverse of the M × M coefficient 
matrix (4.15). 

 Hessian and covariance matrices of the ordinary linear regression problem 
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For the general χ2 minimization problem with the model function f (x; a1, a2, …, aM) 
nonlinear in one or more of the parameters, then the expressions for the elements of the 
M × M  Hessian matrix can be much more complicated.  

If the regression is ordinary, with σ 2
i  = σ 2

yi , then: 

 Ordinary nonlinear regression problem Hessian matrix 

4.16 

( )

( )

1 2

2 2 2 2
2

1

2

2
1

( ) 1 ( ; , , , )

1 ( ) ( ) ( )2 ( )

M

N
jk i i

j k j ki i

N
i i i

i i
j k j ki i

H y f x a a a
a a a a

f x f x f xy f x
a a a a

χ

s

s

=

=

∂ ∂= = −
∂ ∂ ∂ ∂

 ∂ ∂ ∂= − − 
∂ ∂ ∂ ∂  

∑

∑



   

For a total regression problem (either linear or nonlinear), the Hessian matrix will include 
terms involving the derivatives of σ 2

i . 
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Correlations among the parameter estimates 
Figure 4-2 illustrates an issue which will often arise when more than one parameter is 

involved: the parameters’ distributions are correlated, and therefore their covariances do not 
vanish. For example, consider again the simple 2-parameter linear regression problem, 
y = f (x) = a1+a2x, with equal uncertainties for all data points σ 2

i  = σ2. The solution of the χ2 
minimization problem is given in (4.5) on page 45. The covariance matrix of the parameter 
estimates is σ2 times the inverse of the coefficient matrix in (4.5), since σ2 was divided out of 
both sides of (4.4) to get (4.5): 
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The covariance σ 2
a1a2 has a sign opposite to that of Σxi . Clearly it will be nonzero unless 

Σxi = 0 (that is, the arithmetic mean of the xi  vanishes). That the covariance between the 
slope and y-intercept of the line is usually nonzero is illustrated in Figure 4-3 below. 

Figure 4-3: A linear fit to the data 
points shown has a y-intercept out-
side the data’s range. ±2σ errors in 
the fit’s slope (shown by the dashed 
lines) result in corresponding errors in 
the fit’s intercept. Consequently these 
errors in the fit’s slope and intercept 
are correlated.  

 
 

Uncertainties in model predictions 
Once the model function’s free parameter values have been optimized and the parameters’ 

covariance matrix has been obtained, these results may be used to calculate the expected 
value and uncertainty of the model y = f (x) for any particular input value x. The model 
predicts that y = f (x; a1, a2, …, aM), where the parameters a1, a2, …, aM take on their 
optimized values.  

To calculate the uncertainty in this prediction, we will use the “naïve” uncertainty 
propagation formulas—in particular the second of equations (2.8) on page 28. Let us now 
introduce a more compact notation for that expression. The gradient vector of y = f (x) with 
respect to the M parameters, ∇a f , has components 
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The components of ∇a f  are evaluated at (x; a1, a2, …, aM), using the parameters’ optimized 
values. ∇a f  then combines with the parameter estimates’ covariance matrix Σ  to determine 
the uncertainty in the model prediction y = f (x): 

4.18 ( )yy f x f fs± = ± ⋅ ⋅a aΣ∇ ∇   Uncertainty in the model y = f(x) 

The dot products shown in the uncertainty calculation in (4.18) represent matrix 
multiplications wherein the left-hand ∇a f  is written as a row matrix and the right-hand ∇a f  as 
a column matrix. An example of the result of the calculation (4.18) is shown in Figure 4-4. 
Note how the model becomes more uncertain when extrapolated beyond the measured data 
range, as you might expect. 

Figure 4-4: A linear fit to the same 
data points as those shown in Figure 
4-3. The solid line shows the model 
y = f (x ) which minimizes χ2, and the 
dashed lines show the ±1σ boundaries 
on the model calculated using (4.18). 

 

 

EVALUAT ING F IT  RESIDUALS 

Once chi-squared minimization has been used to fit a theoretical model y = f (x) to a set of 
experimental data points (xi , yi), you must judge how well the optimized function actually 
describes the measured data and how trustworthy are the resulting free parameter estimates. 
An important tool to assist with these deliberations is an inspection of the fit residuals yi  
− f (xi) along with a careful evaluation of the final reduced chi-squared value. This section 
addresses some issues typically encountered when using fit residuals and reduced chi-
squared to assess fit results. 

Data consistent with the model, and accurate uncertainty estimates 
Chi-squared minimization using an ordinary least-squares algorithm produces a maximum 

likelihood result if the scatter in the fit residuals yi  − f (xi) is normally distributed. If the 



  Physical Data Analysis 

59 
 

optimized model is consistent with the measured data, then the resulting χ∼ 2 is expected to be 
1. In this case, the data are well-described by the model (at least to the level of the noise in 
the data), and the optimized parameter values along with their covariance matrix provide 
maximum likelihood estimates and uncertainties for the theory’s free parameters. 

Consider the example shown in Figure 4-5, a laboratory 57Fe Mössbauer nuclear absorption 
spectrum of a stainless steel sample. As a radioactive 57Co source is moved toward and away 
from the absorber, it emits 14.4 keV (kilo-electron-volt) gamma rays which are very slightly 
Doppler shifted in energy by the instantaneous velocity of that relative motion. The data 
consist of the observed rates at which these gamma rays pass through the thin absorber as a 
function of the relative velocity of source and absorber. The apparatus divided the relative 
velocity range into discrete channels and recorded the number of detection events in each 
velocity channel. The count rate uncertainties (shown by the error bars in Figure 4-5) were 
derived by assuming that Poisson counting statistics describe the expected variations in the 
observed number of counts in a channel. 

 
Figure 4-5: Iron-57 Mössbauer nuclear absorption spectrum of a type 302 stainless steel sample. 
The data were collected for 6 minutes as the cobalt-57 source was oscillated with a constant 
acceleration toward and away from the absorber. The source relative velocity profile was first 
calibrated using a standard natural iron absorber. Count rate uncertainties were estimated using 
Poisson count statistics and are shown by the error bars on each data point. The theoretical model 
used to fit the data had 5 free parameters: 3 fundamental and 2 experiment-specific. The optimized 
model y  =  f (x ) is plotted in the left-hand graph, and the residuals yi  –  f (x i) are shown in the right-
hand graph. 

The model used to fit the data set shown in Figure 4-5 had 5 free parameters: the 
fundamental physical theory of the nuclear gamma ray interaction predicts the absorption line 
position and shape using 3 free parameters, and the specific experimental setup required 2 
more. A nonlinear, ordinary least-squares algorithm resulted in the optimized model plotted 
in Figure 4-5 along with its residuals yi  − f (xi). The 119 data points and 5 optimized 
parameters left 114 degrees of freedom for the χ∼ 2 variate. Following the minimization, 
χ∼ 2 = 0.980, well within one standard deviation of unity, the value expected for a model 
consistent with the observed data. 

Count rate (1/sec) vs. Velocity (mm/sec)
Data and model Residuals
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The optimized values of the parameters represent maximum likelihood estimates only if the 
residuals yi  − f (xi) are consistent with independent, normally distributed samples. There is 
no obvious systematic pattern to the residuals in the right-hand graph of Figure 4-5, and the 
χ∼ 2 value so near unity implies that the magnitude of their scatter about the model y = f (x) is 
consistent with the data point uncertainties. As a further test, we apply the simple, quartile 
Pearson’s chi-squared test, equation (3.9) on page 39. We histogram the residuals and 
compare to a Gaussian model; the results are shown in Figure 4-6. The encouraging match of 
the histogram to a normal distribution indicates that the optimized free parameter values and 
their associated uncertainties (or covariance matrix) may be reasonably identified with 
maximum likelihood estimates, and that the experimental data are completely consistent with 
the theoretical model and its optimized parameter values.   

Experiments such as the one described here are often intended not to test theoretical models 
but rather to use well-established models in order to better refine empirical estimates of 
physical constants, such as the electron charge/mass ratio example discussed in the previous 
chapter. Results analogous to those in Figure 4-5 indicate that an experiment designed to use 
a particular theoretical model is successful, and that the measured value of a parameter and 
its associated uncertainty can be trusted, except for possible, lingering systematic errors not 
properly accounted for by the experimenter (see Chapter 5). In fact, conversely, such an 
experiment may use well-established theory and precisely-measured values of physical 
constants to perform a calibration of a scientific apparatus or instrument. In this case, the 
experiment is designed to measure relevant parameters which can then be used to correct for 
systematic errors and thereby greatly improve the instrument’s accuracy.  

Choosing between two optimized theoretical models 
Scientific experiments are often performed to attempt to choose between two or more 

competing theories. If these theories provide incompatible predictions of an experiment’s 
results, even when each has had its free parameter values optimized, then a precisely 
measured data set may provide the evidence needed to determine which theory is more likely 
to correctly model the phenomena explored by the experiment.  

For example, consider a crystalline semiconductor sample into which impurities have been 

 

 

Figure 4-6: Histogram of the fit residuals 
shown in Figure 4-5. The residuals are quite 
accurately characterized as samples of a 
normal distribution, shown by the superim-
posed curve. The reduced χ2 of 0.98 
indicates that the data are consistent with 
the model, and therefore the optimized 
parameter values provide reasonable 
maximum likelihood estimates of the free 
parameters and their uncertainties. 
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introduced to provide a fixed cadre of charge carriers. At moderately low temperatures, these 
charge carriers can completely dominate the conductivity of the material, and the variation of 
its conductivity with temperature may then provide important information concerning the 
kinematics of charge carrier motion within the material. The measured temperature 
dependence of the resistance of a semiconductor crystal is shown in Figure 4-7. 

 
Figure 4-7: Temperature dependence of the resistance of a semiconductor crystal rod “doped” with 
impurity atoms to make it conductive at temperatures well below those which would ionize a 
significant fraction of the semiconductor atoms. The left-hand graph shows the measured data, 
each with resistance uncertainty of ±0.03 ohm. Although the data in the left-hand graph appear to 
be quite linear, a fit to a linear model shows a small, but significant, systematic pattern to the 
residuals (points and black line in the right-hand graph). Fitting to a model varying with 
temperature as T 3/2, on the other hand, results in much smaller, seemingly random residuals (red 
line in right-hand graph). Data measured during an undergraduate physics laboratory experiment. 

At temperatures low enough to thermally ionize only an insignificant fraction of the 
semiconductor atoms of the crystal (but not so low that the impurity-provided charge carriers 
are frozen out), the charge carrier density in the crystal is very nearly independent of 
temperature, as in a normal conductor (a metal). If these charge carriers behave kinematically 
like those in a normal conductor, then the material’s resistance should rise linearly with 
temperature. Alternatively, the charge carriers might behave kinematically more like the 
particles in a classical gas (or plasma), in which case the material’s resistance should increase 
as the 3/2 power of the temperature. As shown in the residual plot in the right-hand graph of 
Figure 4-7, this latter alternative appears to be much more consistent with the measured data. 

The linear model, y = f (x) = a1+a2x, when fit to the 70 data points resulted in a least-
squares-minimized χ∼ 2 = 6.22. If this were the correct model, we would expect such a large 
reduced chi-squared value (over 30 standard deviations >1) an insignificant fraction of the 
time 52( 10 ).−≈  This conclusion is further supported by the observation that the residuals 
from the fit to the linear model in Figure 4-7 show a clear, systematic variation across the 
data set. The alternative model, y = g (x) = a1+a2x

3/2, fares much better. Its χ∼ 2 = 1.51, about 
3 standard deviations >1. Although still seemingly rather improbable for an appropriate 
theoretical model, it is much more reasonable than the linear model result. Of the two 

Resistance data Residuals
Resistance (ohms) vs. Temperature (Kelvin)



Curve fitting and optimizing free parameter values   

62 
 

models, this latter is much more consistent with the measured data. The residuals yi  − g (xi) 
are shown in Figure 4-8; the model agrees with the measured data to within 0.1 ohm (out of 
an average of 700 ohms) over the tested temperature range (the standard deviation of the 
residuals is 0.037 ohm). 

 
Figure 4-8: Residual plot and histogram of the residuals for the semiconductor data of Figure 4-7 fit 
to a T 3/2 model. The reduced χ2 is 1.51, and the standard deviation of the set of residuals is .0366 
ohm, compared to the resistance uncertainty of 0.03 ohms assumed for the data.  These values are 
approximately 5×10 −5 of the measured resistance values, near the instrument’s precision limit. 

The residuals of the y = a1+a2x
3/2 model fit shown in Figure 4-8 appear to have a small, 

systematic pattern with a period of about 3.5 Kelvin, or about every 15 ohms rise in 
resistance. This pattern may explain the χ∼ 2 = 1.51, and it may be better understood by 
considering the details of the instrumentation used and how the measurement uncertainties 
were determined. The data point uncertainty of 0.03 ohm was determined by analyzing the 
scatter in a set of resistance data acquired while the temperature was held constant, using the 
point estimation techniques of Chapter 2. An additional source of error as the temperature is 
varied could be due to nonlinearity in the resistance measurement. The manufacturer-
specified maximum error due to nonlinearity of the 22 bit, 4-wire resistance measuring 
instrument is stated as 0.0006% of the 1000 ohm scale used, or 0.006 ohm.* Adding this 
nonlinearity error to the 0.03 ohm measurement uncertainty yields 0.036 ohm, tantalizingly 
close to the residuals’ standard deviation of 0.037 ohm. Although not conclusively proven by 
this argument, it provides evidence that the 2 1.51=  can be at least partially understood by 
the small instrument nonlinearity. Chapter 5 further discusses the measurement problems 
introduced by systematic errors, of which this instrument nonlinearity is an example.  

Note that the above observations do not invalidate the conclusion that a 3/2T  model of the 
dependence of the resistance is more consistent with the experimental result than a simple, 
linear temperature dependence. The smooth, systematic pattern to the linear model residuals 

                                                 
* This error due to nonlinearity is inherent to the instrument’s measurement hardware and cannot be improved 
by a simple calibration procedure. On the other hand, calibration errors result in linear scale factor and 0-offset 
errors which would not affect the observed pattern of the residuals. Errors due to instrument nonlinearity, scale, 
and offset are examples of systematic error, discussed in the next chapter. 



  Physical Data Analysis 

63 
 

shown in Figure 4-7 is quite accurately captured by the 3/2T  model, as is demonstrated by 
the red curve in Figure 4-7. 

Evaluating the accuracy of a theory 
As illustrated in the previous section, precise data permits a 

quantitative evaluation of the accuracy of a theory’s prediction 
of an experiment’s results. Let us further examine this issue. 
Consider, for example, the carefully-measured frequency 
response of a series-connected RLC (resistor-inductor-
capacitor) filter circuit shown in Figure 4-9 at right. When a 
sinusoidal voltage  is input to the left-hand pair of terminals, the 
corresponding sinusoidal voltage generated at the right-hand 
terminals (across the capacitor) displays a typical resonant response described (to lowest 
order) by a version of the classic linear, second-order, damped harmonic oscillator theory. 
That theory, when applied to this experiment, has only two free parameters: the resonant 
frequency f0 and the dimensionless quality factor (Q) of the resonance, both of which should 
be determined by the circuit’s R, L, and C values. The theory predicts that at low frequency 
the circuit’s voltage gain will approach unity with no phase shift between the output and 
input sinusoids; at high frequencies the voltage gain will become proportional to the inverse 
square of the signal frequency and the output’s phase shift will approach −180°. For values 
of Q≫ 1 the theory predicts that the transition between these asymptotic behaviors is mainly 
confined to within a few Qths of the circuit’s resonant frequency f0. At f0 the voltage gain 
should be Q and the phase shift from input to output should be −90°.  

The experiment was performed by a computer-controlled data acquisition system that 
precisely measured the amplitudes and phases of the input and output voltage waveforms as 
it swept the input signal (generated by a high-quality, stable signal source) through a real 
RLC circuit’s expected resonance frequency. At each selected frequency the input and output 
waveforms were measured and analyzed multiple times to provide resulting amplitude and 
phase values along with associated uncertainties using the techniques described in Chapter 2. 
The resulting data points’ amplitude gains and phases were fit to the theoretical models 
shown in (4.19), whose parameters A, f0, ϕ0, and Q were optimized using χ2 minimization. 
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Figure 4-9: RLC voltage divider 
(resonant filter). Input voltage 
at left, output at right. 
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 The additional parameters A and ϕ0 provide possible optimized corrections to the theory’s 
predictions of the circuit’s asymptotic gain and resonant phase shift, respectively. They 
should equal 1 and 0, respectively, if the unmodified, simple theory were to perfectly predict 
the experiment’s results.  

Plots of 87 data points and optimized model fits are shown below. Separate fits of the 
theory’s predictions (4.19) to the amplitude and phase shift data were performed, resulting in 
independent determinations of the fundamental parameters f0 and Q. These determinations 
should, of course, agree if the theory adequately describes the circuit’s behavior.  

 Gain magnitude  Phase shift (degrees) 

 
Frequency (kHz) 
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Figure 4-10: Measured frequency response (gain and phase) of an RLC circuit (Figure 4-9). Using chi-
squared minimization, the data were fit to a simple model of a damped harmonic oscillator driven 
by a sinusoidal input. The results of the fit including plots of the fit residuals are shown. The 
precision of the measured data provides for an accurate quantitative analysis of the accuracy of the 
chosen theoretical model. The definitions of the fit parameters used are described in the text. 

The most striking feature of the χ2 minimization result is the obvious pattern in the 
optimized model fit’s gain residuals along with the its very large χ∼ 2

84 (87 data points and 3 
optimized parameters leaves 84 degrees of freedom): the optimized model’s deviations from 
the measured data are very much larger than most of the points’ uncertainties. The optimized 
model of the phase data, on the other hand, has a 100 times smaller χ∼ 2,  although there is also 
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a noticeable upward trend with frequency to its fit residuals, and a reduced chi-squared of 3 
is still quite large for a data set with 84 degrees of freedom. The added fit parameters A and 
ϕ0 also show significant differences from their ideal theoretical values of 1 and 0, differences 
which are many times larger than their estimated uncertainties. Although fits to the two data 
sets provide Q values which agree quite well, their estimates of the resonant frequency f0 
differ by about 10 times their uncertainties. 

One should note, however, that despite the discrepancies noted above, the theoretical model 
(4.19) describes the observed circuit behavior quite accurately. Again examine Figure 4-10: 
visually, the model fits (solid red lines) in the upper plots appear remarkably consistent with 
the measured data. The gain residuals plot demonstrates that as the observed gain varied from 
1.5 to 10 (more than a factor of 6) over a ±38% frequency variation around the resonance, 
the maximum deviation of the measured gain data from the model was only about 0.006, less 
than 0.1% of the maximum gain. The total deviation of the corresponding phase data around 
its optimized model was only 0.6° out of the nearly 180° phase variation, or 0.33%. The gain 
and phase model fits provided values for f0 and Q which agree to within 0.02% and 0.004%, 
respectively. The optimized value of the gain “correction” parameter A is only 0.005 less 
than 1, and the low-frequency trend in the gain residuals shows that the observed gain did 
indeed approach very close to 1, as predicted by the theory. The phase “correction” ϕ0 is only 
about 0.5° away from the theoretical value of −90°, again quite small. Clearly, this 
experiment has demonstrated that a very simple model can provide quite accurate predictions 
of the behavior of a real RLC system, at least within the parameter space investigated by this 
data set. The simple theory’s two abstract concepts, resonant frequency f0 and quality factor 
Q, can obviously be very useful when applied to specific, real world situations such as this 
one.  

Thus the results of this experiment were precise enough to accomplish two important goals: 
(1) establish with high confidence just how accurately the theory was able to predict the 
behavior of the experimental system, and (2) provide accurate data regarding how the 
theory’s predictions failed to explain fine-level details in the system’s behavior. In particular, 
careful analyses of the patterns in the residuals shown in Figure 4-10 provide clues as to how 
the existing theory might be improved. Contrast this with situation illustrated in Figure 4-5 
on page 59, where the residuals were completely dominated by random fluctuations in the 
data, resulting in a reduced chi-squared very near 1.  

High precision, accurate data is the key to revealing new physics not adequately 
described by existing theory. Scientific progress happens because of reduced chi-
squared results ≫ 1, which is thus the goal of many experimental investigations. 

Of course, it is not altogether unlikely that a pattern in the residuals such as that evident in 
Figure 4-10 was the consequence of some unanticipated behavior of the experimental 
apparatus or technique, and not because of the underlying physical phenomenon being 
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investigated. Such potential sources of systematic errors are addressed in the next chapter. If 
modification of the apparatus or the data gathering technique leads to a significant change in 
the pattern of the fit residuals, then the experiment itself may be the culprit, and not the 
fundamental physical behavior being investigated. It is therefore important that the 
experimenter not jump to conclusions prematurely, but remain skeptical and critically 
examine all aspects of the experiment and its analysis.   

In the case of this particular experiment, the precisely-measured but small deviations from 
the simple damped harmonic oscillator theory are mainly caused by the circuit element 
modelled by the inductor in Figure 4-9. This “inductor” was a tightly wound coil of wire with 
many turns wrapped around a core of soft, powdered iron shaped into a toroid and embedded 
in an insulating epoxy matrix. The theoretical model of this structure as a simple, pure 
inductance has two major failings as far as this experiment is concerned:  

(1) Adjacent pairs of closely-spaced wire windings have a small amount of parasitic 
capacitance which, to lowest order, represents a net capacitance in parallel with the 
element’s inductance, complicating the circuit model. 

(2) The powdered iron core’s magnetization in response to the magnetic field generated by 
current through the wire coil may greatly increase the magnetic flux and thus the 
element’s inductance, but it also adds hysteresis to the time-dependent relationship 
between the coil’s current and the resulting magnetic flux. This hysteresis not only adds 
an additional source of dissipation (included in the model’s resistor), but this effect is 
nonlinear, making the element’s inductance as well as its effective resistance slight 
functions of both the frequency and the amplitude of the current through it. 

The effect (1) accounts for much of the amplitude data’s deviation from the model, but the 
small variations in the amplitude and phase residuals within a Qth of the resonant frequency 
are also evidence of effect (2). Interestingly, the general slope to the residuals in the fit to the 
phase data (Figure 4-10) and the nonzero value for phase fit parameter ϕ0 is almost certainly 
due to the presence of some residual systematic error source in the experiment’s phase 
measurement technique. This sort of problem and how to mitigate its effects is addressed in 
the next chapter. 
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Chapter 5  
Dealing with systematic errors 

THE NAT URE OF SYSTEMATIC ERROR AND UNCERT AINT Y 

This chapter expands on the discussion of systematic error, first addressed in Chapter 2. 
Here we provide a few specific examples of systematic error sources and introduce basic 
techniques for how to properly handle the uncertainties they introduce into an experiment’s 
results. Recall the definition of systematic error: it is the general term used to describe errors 
introduced during the design, construction, and data acquisition phases of an experiment 
which affect the accuracies of all measurements in strongly correlated ways. Because of the 
finite accuracies attainable when constructing and calibrating an experimental apparatus and 
the instruments used for its various measurements, residual errors in numerical parameters 
which characterize the apparatus will introduce errors into the measurements and analyses of 
all of an experiment’s data points. As mentioned in Chapter 2, sources of systematic error 
lurk everywhere: the calibration error in a voltmeter, the angular alignment error of the fixed 
arms of an interferometer, the position and alignment errors in the placement of detectors 
around a particle collision site, the machining errors in the dimensions of a resonant cavity, 
trajectory calculation errors introduced by improperly analyzed fringe fields of an 
electromagnet, changes in the dimensions or electrical characteristics of the apparatus caused 
by slow, gradual changes in laboratory temperature or humidity, etc.  

Because inaccuracies introduced by systematic errors are traceable to residual errors in the 
characterizations of the apparatus and the instruments themselves, the resulting data point 
errors will be strongly correlated and will not, in general, be characterized by noticeable 
fluctuation from measurement to measurement. For example, if improper calibration of a 
voltmeter introduces a 1% error in its readings (all voltages it reports are 1% larger than the 
actual values, say), then averaging multiple readings will result in a mean measured voltage 
with an expected value which will be off by 1%, no matter how many readings are averaged, 
and no matter to how small the resulting standard deviation of the mean value may seemingly 
be reduced. 

Because systematic errors do not manifest themselves as seemingly random, 
independent fluctuations in the results of repeated measurements, many of the 
statistical analysis methods introduced in the previous chapters become inapplicable 
when analyzing their possible effects on the measured data. Data uncertainties 
introduced by systematic errors are not improved by averaging the results of repeated 
measurements.  

 



Dealing with systematic errors   

68 
 

Because the errors in measurements introduced by systematic error sources represent a 
fundamental limit to the accuracy of an experiment’s results, it is a waste of the 
experimenter’s time to work hard to reduce the effects of noise fluctuations to levels much 
lower than this fundamental limit (using the techniques presented in earlier chapters). 
Instead, efforts to identify, understand, and reduce potential systematic errors must go hand 
in hand with efforts to reduce the effects of noise when designing and conducting an 
experiment. Thus it is important to estimate the uncertainties in these systematic numerical 
values, that is, the experimenter’s best estimates of the magnitudes of the various systematic 
errors. With this information in hand, the experimenter may then evaluate the impacts of each 
of these errors on the accuracy of the experiment’s results. Along with estimates of the noise 
fluctuations expected to be generated by various components in the apparatus, the 
experimenter can create an error budget for a given apparatus and instrument configuration. 
Comparison of the error budget to the accuracy requirements of the experiment becomes a 
key part of an experiment’s design. The experimenter can then identify those sources which 
are the major limiters to the experiment’s accuracy and consequently focus time and money 
on those aspects of the design, construction, and calibration of the apparatus which reduce 
their collective impact to an acceptable level. 

INCORPORATING SYST EMAT IC  UNCERT AINT Y EST I MATES 

Because uncertainties due to possible systematic errors cannot generally be reduced by 
averaging repeated measurements, they establish a limit on the accuracy of an experimental 
result. Consequently, they must be incorporated into the experiment’s uncertainty 
determination near the very end of the analysis and after following any of the curve fitting 
techniques addressed in Chapter 4. Those techniques are only appropriate in the face of 
errors which are independent from measurement to measurement, such as fluctuations due to 
noise. The various data point uncertainties σ i  appearing in expressions such as (4.1) and (4.2) 
on page 43 represent the magnitudes of independent data fluctuations, and not the strongly 
correlated errors introduced by systematic sources. Let me emphasize this point: 

Whenever calculating individual data point uncertainties that will then be used for 
curve fitting and parameter optimization, NEVER INCLUDE SYSTEMATIC ERROR 
SOURCES!  

Failure to follow this rule is one of the most common mistakes made by beginning data 
analysts, and it is the most common reason for unacceptably small reduced chi-squared 
results 2 1χ ( ).   
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Instrument calibration uncertainties 
Our first example of how to properly incorporate systematic uncertainty into an 

experiment’s result is a particularly simple, but illustrative, one: including the calibration 
uncertainty of a voltage measurement. Here’s the scenario: the data are pairs of values (xi , yi) 
along with uncertainties σ i  determined from the scatter in the measured data points. The 
associated theory predicts that ,y a x=  and the interesting physics happens to be in the value 
of the slope a. The yi  data consist of measured voltages, and the voltmeter has calibration 
uncertainties provided by its manufacturer. Because these calibration uncertainties are 
systematic, they must not be incorporated into the individual data point σ i  determinations. 
The xi  values are not measured using that same instrumentation. 

The experimenter fits the data to the function ,y a x b= +  rather than the simpler theoretical 
form, because there is probably an unknown, systematic offset error in the voltage 
measurements. This offset error could include a contribution from the voltmeter as well as 
from electrical grounding imperfections within the apparatus. Using the additional parameter 
b will result in a fit which can accommodate this source of error as described in a subsequent 
section of this chapter (starting on page 70). Once the data have been fit using the methods of 
Chapter 4, resulting in estimates of the slope a ±σ fit , incorporation of the remaining 
systematic uncertainties may proceed. Note that we have denoted the uncertainty in a’s fit 
result as σ fit  to help keep the various uncertainties organized. 

To make it clear how we proceed to include the voltmeter uncertainty, realize that a 
measured voltage vm  can be related to the actual voltage v using the simple relation 

,mv c v e= +  where c and e are the voltmeter calibration gain (slope) and offset.* A perfect 
calibration would require that c = 1 and e = 0, but, of course, some residual errors must be 
present. These errors are characterized by calibration uncertainties, so that c = 1 ±σc , and e 
= 0 ±σe . For example, the Agilent 34410A has a specified accuracy on its 100 mV scale of 
0.0050% of the voltage reading plus 0.0035% of the selected range scale (100 mV).† This 
should be interpreted as specifying that 55.0 10cs −= ×  and 53.5 10 100mVes −= × ×

63.5 10 V.−= ×  Because the experimenter’s chosen fitting function y a x b= +  includes an 
offset b, the fit result should adequately correct for any actual nonzero calibration error e.  

Thus we need only assess the impact of the calibration uncertainty σc  on the fit’s slope a, 
and, in particular, on the final value of σa . The actual y voltage values are related to 
measured values  ,my c y e= +  so that the fit’s slope should be corrected to ,a c a a→ =  
because the expected value of c is 1. So in this case the uncertainty in the meter’s calibration 
doesn’t affect the final value quoted for the fit’s slope parameter, but it does affect the 

                                                 
* For this elementary discussion we neglect any nonlinearities in the transformation between the actual and 
measured values. 
† Agilent 34410A/11A/L4411A User’s Guide, fifth edition, June 2012, © Agilent Technologies, Inc., 2005-2012. 
The stated accuracy is for within 1 year and 5°C of factory calibration for a DC voltage measurement. 
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parameter’s uncertainty. Using the methods of Chapter 2 we must propagate the 
uncertainties of both c and a in the product ca to get the final experimental uncertainty. The 
resulting slope uncertainty, including the voltmeter calibration, is given in (5.1). 

Including calibration uncertainty in the fitted slope: 

5.1 ( )
2 22

2fit fita c
ca a c a

s ss s s    = + = +        
   

As should be expected, the final fractional uncertainty in the experiment’s value for the slope 
cannot be reduced below the voltmeter calibration’s “% of reading” uncertainty σc . 

INCLUDING UNKNOWN SYST EMATIC ERRORS AS PARAMET ERS IN 
AN AUG MENT ED T HEORY 

Sometimes it happens that a possible systematic error value can be incorporated as an 
additional unknown free parameter in the functional representation of the theory the 
experiment is designed to test. A common example would be a constant offset error in the 

 y a x=   y a x b= +  
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Figure 5-1: Including a parameter to account for a measurement offset. The fits and residuals are 
graphed for two different models; the right-hand model includes an additional parameter to 
accommodate the systematic offset error in the measurements. 
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measurement of, say, a data point y value. If the expected functional relationship is that y is 
proportional to x, i.e. ,y a x=  and the interesting physics happens to be in the value of the 
slope a, then fitting the data to the augmented function y a x b= +  would result not only in 
an estimate of the systematic offset b, but would also automatically reduce the effect of the 
offset on the experimentally obtained value for the slope a. The optimized value of the offset 
parameter b (along with its uncertainty) can then be compared to what was the expected 
magnitude of the systematic offset error, as shown in the example in Figure 5-1. 

This example of a constant offset parameter added to the theoretical functional 
relationship y a x=  is a very common practice.  

It is almost always a wise choice to augment the theoretical fitting function by including 
one or two additional parameters which can account for various systematic errors.  

B ACKGROUND SUBT RACT ION 

It is also important to keep this last method in mind when fitting a theory to data which 
may include points affected by the presence of background events not directly relevant to the 
phenomenon under investigation. Although not strictly an example of systematic error as 
we’ve defined it, in many experiments some level of background activity unrelated to the 
theory under investigation will be present. Assume that the y data values contain this 
background activity which is a function of the x values: ( ),y b x=  where b represents the 
background function. If y responds linearly to the presence of both the background b and the 
function of interest f, then ( ) ( ).y f x b x= +  Both f and b may depend on unknown free 
parameters, although the ones defining f are the more interesting ones. If the magnitude of b 
is significant, then fitting ( ) ( )y f x b x= +  rather than just ( )y f x=  may provide a more 
accurate result for f and its free parameter values.  

This technique is appropriate in many, but not all, cases. Consider a simple example for 
which it works quite well. Figure 5-2 on page 72 shows part of a high energy photon 
spectrum captured using a scintillation detector. A “full energy” peak is isolated in the 
portion of the data shown, which plots the number of events recorded (y) in each detector 
energy channel (x). Although the Poisson distribution more properly describes the shape of 
the peak, at these energies this distribution is nearly indistinguishable from a Gaussian with 
the same standard deviation. The data are plotted two different ways in Figure 5-2: the left 
plot uses a linear vertical scale to highlight the Gaussian shape of the peak, whereas the 
logarithmic scale in the right plot emphasizes the low-intensity data on either side of the 
peak. Evidently, the Gaussian peak sits on top of a much weaker background event spectrum 
which appears to decrease with increasing energy. This background spectrum is generated by 
photon interactions in the detector which are unrelated to those generating the full energy 
peak (i.e., primarily by multiple Compton scattering of one or more additional photons). 
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Ignoring the background and fitting a Gaussian function to the data in Figure 5-2 may 
result in a poor fit. Adding a simple background function b(x) can offer significant 
improvement, as demonstrated in Figure 5-3 on page 73. Just including a constant 
background to the fitting function resulted in a huge improvement to the fit and changed the 
estimated width of the peak by nearly 10%. Using a linearly-varying background changed the 
estimated peak position by nearly half a channel width, twice the estimated peak position’s 
uncertainty. 

  

 
Figure 5-2: Two views of a gamma ray photon energy spectrum. The two graphs show the same 
histogram of event counts (vertical) vs. detector energy channel (horizontal). The Gaussian-shaped 
distribution has a width determined by the detector’s energy resolution. The semi-log plot on the 
right emphasizes the background spectrum upon which the peak is superimposed. 
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Figure 5-3: Including a function to model the background can greatly improve the fit to the data. 
Data point uncertainties were estimated using an approximation to Poisson counting statistics 

(σ 2
y ≈ y). 
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