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 Fundamental Concepts of Thermal Physics (briefly) 

In this appendix we review (or maybe introduce you to) some of the fundamental theoretical concepts 
of thermal physics needed to understand the theories behind and significance of some of the 
sophomore physics lab experiments. We adopt a microscopic, quantized point of view from the outset 
for our description of the composition of our macroscopic systems, because we feel it makes the laws of 
thermal physics and the concept of entropy much easier to comprehend. The sophomore lab library has 
several good texts covering these topics, so we will be brief. In particular, much of the material 
presented here closely follows that in F. Mandl, Statistical Physics (2nd ed., 1988, John Wiley & Sons). 
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 Fundamental Concepts of Thermal Physics (briefly) 

• Macroscopic systems, microstates, state variables 

A macroscopic system is one which consists of an enormous number of elementary constituents (such as 
atoms, conduction electrons, and photons) constantly exchanging energy and momentum among 
themselves. A macroscopic system typically contains on the order of 1020 or more constituent particles 
and thus would require the specification of a vast number of parameters to fully describe the individual 
states of these constituents. The number of required parameters is called the number of degrees of 
freedom of the system, and this complete specification may be referred to as a description of the 
system’s microstate. Because of the interactions between the system’s parts and the interaction of the 
system with its surroundings, its microstate is continually changing. 

Even though a specification of the evolution of such a system’s microstate is hopelessly complex, there 
may be a relatively few macroscopic state variables which adequately describe the system’s average 
overall characteristics, such as the number of constituent particles N( ) , mass density ρ( ) , volume V( ) , 
pressure P( ) , temperature T( ) , magnetic polarization M



( ) , angular momentum J


( ) , etc., along with 
other parameters which may describe the influence of external forces on the system, such as gravity or 
externally-imposed electromagnetic fields. These variables tend to fall into three broad categories: (1) 
those which specify externally imposed fields or forces; (2) those whose values scale with the overall 
quantity of material, such as the system’s mass and volume; and (3) those which do not scale directly 
with the size of the system, but may be a function of position within the system, such as pressure and 
temperature. The latter two categories are termed extensive and intensive state variables, respectively. 

A set of state variables and their values which adequately describe the system’s overall characteristics 
specifies the system’s macrostate. Generally, there will be many, many microstates of the system which 
are consistent with this macrostate specification, and there is no practical way to determine which one 
of these myriad microstates is currently occupied by the system. Thus we are led to a statistical 
description of the microscopic behavior of the system as it relates to the evolution of the system’s 
macrostate. This description is the goal of thermal physics (broadly: thermodynamics, statistical 
mechanics, and kinetic theory). 

• Thermal equilibrium 

A macroscopic system may be divided into parts, or subsystems (still of macroscopic size), whose various 
macrostates may be specified as described above. The values of the overall macroscopic system’s 
extensive state variables will then generally be given by the sum of the subsystems’ individual 
corresponding extensive variable values (if you are careful in your definitions of these subsystem 
extensive variables), but single values for the system’s intensive variables will generally be undefined 
(since, for example, the pressures and/or temperatures of the subsystems will differ). A full macrostate 
specification of the system could thus require a careful division into subsystems whose individual 
macrostates are then listed. Similarly, the microstate of the overall system could be thought of as a 
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function of the subsystems’ individual microstates along with terms describing the interactions among 
the subsystems.  

For example, consider an isolated container of volume V  filled with a gas of N  neon atoms. Assume 
that the total kinetic energy of all the neon atoms is U  and the total angular momentum of the atoms is 
0, but the gas is not of uniform density and temperature, and it is full of eddies and currents. An 
accurate macrostate description of the gas would clearly require not only the specification of the values 
of V ,  N,  and U  (all extensive state variables in this case), but also a whole host of other variables 
describing the variations in density, temperature, and velocity of small, but still macroscopic, parts of 
the gas. 

If a system (such as the neon gas described above, for example) is isolated from the outside world then 
the interactions among its constituents and consequent transitions to different microstates will 
eventually bring it to thermal equilibrium, when all its state variables become well-defined and constant 
(except for incredibly tiny fluctuations about their mean values). In particular, the temperature T  will 
be uniform and constant throughout the system’s various subsystems. This temperature equalization is, 
indeed, one of the hallmarks of thermal equilibrium, and will be discussed further below. At thermal 
equilibrium a minimal set of macroscopic state variables is required to uniquely specify the macrostate 
of the system, and all the other state variables’ values may be derived from them using the system’s 
equations of state. 

• Internal energy, heat, work, and the first law of thermodynamics 

The internal energy U( ) of a macroscopic system is the sum total of all of its constituents’ kinetic and 
potential energies of various kinds (where 0U =  is usually, but not always, taken to correspond to the 
ground state of the system). If the system is isolated, then its internal energy must remain constant, 
even though its constituents are exchanging energy among themselves as the system’s microstate 
evolves.  U  is one of a system’s extensive state variables, and it is connected to the other state 
variables (in thermal equilibrium) through the equations of state. A system which is not isolated 
interacts with its surroundings, and its internal energy will change as it exchanges energy (and possibly 
constituent particles) with the other systems surrounding it. This energy exchange may result from 
macroscopic, large-scale interactions such as mechanical work or externally-applied electromagnetic 
forces, or it may result from the individual, microscopic, nearly independent interactions of its 
constituent particles with those of another system (without any accompanying large-scale, macroscopic, 
net force between the systems). This latter interaction is known as heat transfer, and its inclusion in the 
determination of the change in the internal energy of a system is articulated in the First Law of 
Thermodynamics. Note that heat, like work, is a measure of energy transfer between systems and is not 
a state variable.  

The internal energy is changed by heat transfer to the system or work performed by the system, so that 
for an infinitesimal energy transfer 

 dU Q W= −    (B.1) 
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The symbol   is used in (B.1) to emphasize that the increments of heat and work are not changes in the 
system’s state variables, but represent energy interactions with the system’s surroundings — Q  is heat 
transferred into the system, W  is mechanical work performed by the system. Clearly, the internal 
energy of a system may be changed by various different combinations of heat transfer and work; the 
process through which the system is changed by interaction with external systems determines this 
division between heat and work. 

• Statistical weight, entropy, and the second law of thermodynamics 

If a system’s internal energy U increases (as it absorbs energy from its surroundings), its temperature T  
generally rises, and the opposite is true if U decreases. The direction of heat flow between interacting 
systems is, of course, opposite to the gradient of the temperature, and, as mentioned previously, 
thermal equilibrium is reached only when the temperatures of all the various interacting systems are 
identical (this final observation is a consequence of the so-called Zeroth Law of Thermodynamics). As we 
shall see, the temperature T  is most suitably defined by the absolute or thermodynamic temperature 
scale where 0T =  only if 0U =  (the system is in its ground state). 

The ultimate quantum nature of the kinematics of the microscopic particles making up a macroscopic 
system must be considered when you try to understand the relationship between the ever-changing 
microstate of a system and its observable macroscopic properties. The microstate of a finite system 
(however large) with f  degrees of freedom may be identified as a point in a 2 f - dimensional phase 
space of f  coordinates iq  and their associated f  (conjugate) momenta ip . Because of the 
uncertainty principle, each microstate cannot be specified with arbitrary accuracy, but must instead 
occupy a phase space volume of at least ( ) f

i iq p h∆ ∆ ≈∏ , where h  is Planck’s constant. Because of 
this division of the phase space of possible microstates into finite volumes by the uncertainty principle, 
the number of possible microstates is countable, and, for example, these states may be numbered by an 
integer index ( 0,1, 2, )r r =  . If we take the microstates of the system to be its quantum mechanical 
eigenstates of the internal energy, then the states may be indexed in order of increasing internal energy 
of the system so that 0 1 1r rU U U U +≤ ≤ ≤ ≤ ≤   . In this example 0r =  would denote the ground 
state of the system. Note that it is likely that many of these energy eigenstates are degenerate, so that 

1r rU U +=  for many values of the index r . 

The number of available microstates of a macroscopic system generally grows very, very rapidly as its 
internal energy is increased. For example, consider the quantum mechanical system of a single, spinless 
particle in a 1-dimensional box. The number of degrees of freedom in this case is 1f = , and the 
particle’s quantum levels in the (infinitely strong) box are equally spaced in momentum. Therefore for 
energies 0U U , its ground state energy, the number of energy levels (microstates) U≤  is very nearly 

1/2U∝ . If you have a system of 1f   independent particles in the box, then ( )UΦ , the total number 
of different microstates of this combined system with total energy U≤ , is roughly A fU∝  where A  is 
a constant of order unity. Since for a macroscopic system 2310f  , ( )UΦ  increases at an enormous 
rate with increasing U . 
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Consider the number of available microstates of an isolated macroscopic system with fixed ( , )V N  and 
with internal energy in the small interval Uδ  about the energy U , with U Uδ  . Given the result 
above, the total number of microstates in this energy range ( , , ) ( )U V N f U U UδΩ Φ , so that  

 ln ( , , ) ln ( ) ln ln( / )U V N U f U UδΩ Φ + +   

But  23ln ( , , ) 10 lnU V N f fΦ    , so, unless 
2310/ 10U Uδ −

 , an incredibly small energy interval,  

 23ln ( , , ) 10U V N fΩ     

So lnΩ  is for all intents and purposes independent of the size of the energy interval Uδ . These 
( , , )U V NΩ  microstates represent all the possible states of the system consistent with the constraints 

( , , )U V N , so any macrostate of the system consistent with the given ( , , )U V N  is associated with 
some subset of these microstates. The fundamental postulate of statistical mechanics is that for a 
macroscopic system over the long term each microstate is equally likely to occur, and the system’s actual 
microstate is continually transitioning in a random fashion between these various states. A further 
postulate is that in most macroscopic systems of interest the macrostate representing thermal 
equilibrium is associated with all but an incredibly tiny fraction of these microstates, and that once an 
isolated system reaches equilibrium the typical fluctuations in the system’s state variable values away 
from their respective means is of order 1/ 2 1010f − −

  or smaller! General derivations of these 
postulates in terms of the underlying laws of the classical or quantum dynamics of individual particles 
are elusive, but the great success of thermal physics theory demonstrates that they must be reasonably 
valid. 

Let a particular macrostate be represented by the set of state variables ( , , , )U V N α , where α  is a list 
of all the other state variable values required to fully specify this macrostate. Then ( , , , )U V N αΩ  is the 
number of microstates consistent with this macrostate. This number, ( , , , )U V N αΩ , is called the 
statistical weight of the macrostate ( , , , )U V N α ; from the postulate stated above, we know that the 
probability that our isolated system left to itself for a long time will still be found in this macrostate is 

( , , , )U V N α∝ Ω .  We define S , the entropy of this macrostate as: 

 ln ( , , , )BS k U V N α≡ Ω   (B.2) 

where Bk  is Boltzmann’s constant, -231.38 × 10  Joules / Kelvin . Since f , the number of degrees of 
freedom, is generally N∝ , we see that lnS f N∝ Ω∝ ∝ , so the entropy S  is an extensive state 
variable of a macroscopic system. Although the thermodynamic concept of entropy was introduced by 
the German physicist Rudolph Clausius in 1850 (he also first conceived the second law of 
thermodynamics), the fundamentally microscopic, statistical definition in (B.2) was developed by the 
Austrian physicist Ludwig Boltzmann in 1877 (who is rightly credited as the “father” of statistical 
mechanics). 
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Since the vast majority of the microstates consistent with the given ( , , )U V N  are associated with the 
thermal equilibrium macrostate (in accordance with our postulate stated previously), an isolated system 
left to itself for a long time is overwhelmingly likely to be found in its equilibrium macrostate, and the 
entropy is at a maximum for the equilibrium macrostate of an isolated system. If the system is specially 
prepared in some non-equilibrium macrostate ( , , , )U V N α  before it is isolated, then as time goes on 
interactions among the system’s microscopic particles will almost certainly cause the system to evolve 
through a succession of “nearby” macrostates with ever higher statistical weights until it reaches the 
thermal equilibrium macrostate. Thus the entropy S  of an isolated system rises as time goes on (except 
for very tiny fluctuations), until thermal equilibrium is achieved. This is one way to state the Second Law 
of Thermodynamics. A typical laboratory-sized macroscopic system at thermal equilibrium has 

23 1ln 10 Bk −Ω   , so the entropy S  at equilibrium is typically within a few orders of magnitude of 
unity. Because there is usually a unique ground microstate for a typical macroscopic system, equation 
(B.2) shows that 0S =  for a system in its ground state; otherwise 0 .S >  

• Temperature 

Consider an isolated system ( , , )U V N  consisting of two subsystems, 1 1 1( , , )U V N  and 2 2 2( , , )U V N , 
which are very weakly coupled so that any forces acting between them are weak and slow to affect the 
state of either. The total system energy 1 2U U U= + , since we may neglect the tiny energy of 
interaction between the two parts. Similarly, 1 2V V V= +  and 1 2N N N= + . In this case we can 
consider every microstate of the whole system to factor into the product of the (essentially 
independent) microstates of the two subsystems, so that for any particular pair of macrostates of the 
subsystems, it must be true that 

 
1 1 1 1 2 1 1 1 1 1 2 2 2 2 2

1 1 1 1 2 1 1 1 1 1 2 2 2 2 2

1 2

( , , , , , , , ) ( , , , ) ( , , , )
ln ( , , , , , , , ) ln ( , , , ) ln ( , , , )

U V N U V N U V N U V N
U V N U V N U V N U V N

S S S

α α α α
α α α α

Ω = Ω × Ω
Ω = Ω + Ω

∴ = +

 

Now assume that the volume and number of particles in each of the two subsystems are fixed, but the 
subsystems can slowly exchange energy through heat transfer. When the total system is at thermal 
equilibrium, then S  is at its maximum, and, in particular, 

 
1 1 2 2 1 1 2 2 1 1 2 2

1 2 2 1 2

1 1 1 2 1 2, , , , , , ,

0
V N V N V N V N V N V N

S S dU S S S
U U dU U U U

         ∂ ∂ ∂ ∂ ∂
= = + = −         ∂ ∂ ∂ ∂ ∂         

  

 
1 1 2 2

1 2

1 2, ,

(at equilibrium)
V N V N

S S
U U

   ∂ ∂
∴ =   ∂ ∂   

  (B.3) 
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This equality (B.3) for subsystems in thermal contact and in thermal equilibrium provides the definition 
of the absolute (or thermodynamic) temperature T  of any macroscopic system in thermal equilibrium:  

 
,

1

V N

S
T U

∂ ≡  ∂ 
  (B.4) 

Absolute temperature has the SI unit of Kelvin, which is chosen so as to very nearly match the more 
conventional °Celsius. To accomplish this match between the two temperature scales (and definitions) 
the “triple point” of water is defined to be at 273.16 Kelvin (or +0.01°Celsius), and this in turn 
determines (using (B.4) and (B.2)) the units of entropy S  and the value of Boltzmann’s constant, Bk .  
Note that (B.3) and (B.4) imply the Zeroth Law of temperature uniformity at thermal equilibrium stated 
previously.  

Since the total system entropy S  in the previous example rises as the system approaches equilibrium, 
the sign of 1/S U∂ ∂  depends on whether 1U  is rising or falling. With the temperature definition (B.4), 
we see that this implies that heat energy flows from the subsystem with the higher temperature toward 
the one with the lower temperature, as it should.  

• Canonical ensemble, Boltzmann distribution, partition function 

Let us extend our previous example as follows: our isolated system now consists of an enormous 
number of identical copies of some small (but still macroscopic) subsystem of fixed volume and number 
of particles, all in weak thermal contact with each other. The overall isolated system has reached 
thermal equilibrium at temperature T , but we know that each very small subsystem’s internal energy 
may still fluctuate as its microstate changes and it exchanges energy with its neighbors. Such a system is 
called a canonical ensemble of the identical subsystems (this concept was thoroughly studied by the 
American mathematical physicist J. W. Gibbs in the early 20th century, who made extensive and lasting 
contributions the thermal physics).  

We wonders (yes, we wonders) what the probability is that, say, the i th  subsystem might be found in a 
particular microstate r  (with energy rU ) at any particular time, or, equivalently, on average what 
fraction of the identical subsystems will be in the particular microstate r  at any given time. 

Once we pick a particular subsystem to study we may treat the remaining subsystems as a single, much 
larger subsystem and then start with our results from the previous section. Since our chosen subsystem 
is very tiny compared to the combined remainder of the system, we treat the remainder as a heat bath 
whose temperature T  will remain essentially constant even though it exchanges relatively tiny bits of its 
total internal energy with our little subsystem through heat transfer. The heat bath will remain 
arbitrarily close to thermal equilibrium throughout if it is so large that our subsystem’s energy rU  is a 
fantastically small fraction of the complete isolated system’s constant total energy U . 

If our little subsystem has energy rU , then, obviously, the heat bath has energy rU U− , and the 
statistical weight of the heat bath’s macrostate is ( , , )rU U V NΩ − . Since we are given the 
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subsystem’s microstate r , the probability for finding this situation must be ( , , )r rp U U V N∝Ω − . 
Consider the log of rp  and the definitions of entropy S  and temperature T  in (B.2) and (B.4); we can 
expand our function of rU U−  in a Taylor series about U (we use a Taylor series for ln rp  rather than 

rp  itself because lnΩ  is a much more slowly varying function of U  than is Ω . This means that the 
Taylor series convergence is much better for lnΩ , and we need keep only its first nontrivial term). 

 

( , , ) ln ln ( , , )
1ln ( , , )

1 ( , , ) ( , , )
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∂
= + − +

∂

= + − +

∴ ∝
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constant
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



  (B.5) 

To normalize the probability rp  we know that the sum of the probabilities for all of the possible 
microstates for our subsystem must be 1, since the subsystem must be in some microstate. Thus for a 
system with fixed ( , )V N  in thermal equilibrium with a heat bath at temperature T , 

 

1 B

B

U k T
r

U k T

r

r

r
Z

p e

Z e

−

−

=

≡ ∑
  (B.6) 

(B.6) gives the probability of finding the system in a particular microstate r  that has energy rU . This is 
the famous Boltzmann distribution, and the sum Z  over all microstates is called the partition function. 

One important note about (B.6): the microstate r  represents one particular microstate only. In general, 
there may be many microstates with energy rU  because the energy eigenstates of the system are 
degenerate. To express the partition function as a sum over energies, you must include the integer 
factor ( )rg U , the degeneracy of the microstates with energy rU : 

 ( ) B

Ur

U k T
r

rZ g U e−≡ ∑   (B.7) 

The probability that the system may be in any of the degenerate energy eigenstates is then: 

 
1( ) ( ) BU k T

r r
r

Z
p U g U e−=   (B.8) 
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• Equipartition of energy in the classical regime 

Assume we have a macroscopic system with f  degrees of freedom in which the separations of 
consecutive but distinct microstate energies are small compared to Bk T , i.e., if  1 rrU U+ ≠ , then 

1 BrrU U k T+ −  . In this case we can use the uncertainty principle to estimate the density of the 
system’s microstates in its 2 f - dimensional phase space of f  coordinates iq  and their associated f  
(conjugate) momenta ip  as / fhη  , as we mentioned some way back (the constant integer η  accounts 
for any additional spin or polarization degeneracy in the single-particle states). If the system is in 
equilibrium with a heat bath at temperature T , then we can estimate the value of the partition function 
Z  by approximating the sum in (B.7) with an integral over phase space as follows: 

 exp[ ( , ) ] f f
B fZ E q p k T d q d p

h
η

≈ −∫
   

  (B.9) 

where the energy is written as a function of the 2 f  phase space coordinates (note that the energy is 
assumed to not depend on the particles’ η  internal states). Additionally, if there are, say, N  
indistinguishable particles involved (such as electrons, helium atoms, etc.), then (B.9) must also be 
divided by !N  to avoid over-counting the states.  

The probability of finding the system in a microstate associated with some differential volume of phase 
space around the point ( , )q p   would then be, in analogy with (B.8), 

 
exp[ ( , ) ]( , )
exp[ ( , ) ]

f f
f f B

f f
B

E q p k T d q d pP q p d q d p
E q p k T d q d p

−
=

−∫

   

   

   

  (B.10) 

Now suppose that our energy function ( , )E q p   depends purely quadratically on at least one of its 2 f  
arguments (either a coordinate iq  or a momentum ip ); in other words, for one argument ix  we have 

 2
iE a x E′= +   (B.11) 

where neither a  nor E′  is a function of ix  (although they each may depend on any or all of the 2 1f −  
other arguments). Now if we fix the values of all the other arguments, then what is the probability 
distribution for the value of ix ? Clearly, 

 2( ) exp[ ( , ) ] exp[ ]B Bi i i i iP x dx E q p k T dx a x k T dx∝ − ∝ −
 

  (B.12) 

(B.12) shows that ( )iP x  is a normal (Gaussian) distribution with mean 0 and variance 2 2Bix k T a= . 

Thus the mean energy contribution to the system stored in the ix   degree of freedom is 

 2 1
2 Bia x k T=   (B.13) 
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which has a right-hand side independent of the values of the other arguments. A complete integration to 
determine the mean energy may be immediately integrated with respect to the argument ix : 

 1
2( , ) ( , ) ( , ) ( , )f f

BE E q p P q p d q d p E q p P q p d q d p k T′= = +∫ ∫
           

  (B.14) 

where the final integration of E′  does not involve the argument ix . 

Therefore, the mean energy of a system in thermal equilibrium at temperature T  will include a term 
equal to 1

2 Bk T  for each degree of freedom satisfying our requirement (B.11) for ix . This is the 

statement of the theorem of equipartition of energy, valid in the classical regime. 

For example, assume we have a classical gas of N  independent, free particles in thermal equilibrium at 
temperature T . If each particle has no internal degree of freedom for storing energy, then its total 
energy is just due to its center-of-mass motion, 2 2 2(1/2 )( )x y zm p p p+ + . Each of the 3 momentum 

components of each particle is a degree of freedom of the system which satisfies the requirements of 
(B.11), so each contributes 1

2 Bk T  on average to the total internal energy of our system. Thus, 
3
2 BU N k T=  for this system. This is the correct expression for the total internal energy of an ideal, 

monatomic, classical gas; the energy/particle depends only on the temperature, T . The equipartition 
idea had a long and interesting development in the 19th century due to the efforts of many scientists, 
but it was first stated in the general form presented here by Boltzmann. 

• Fermions in a box: the ground state of an electron gas 

Now we turn to an important subject for condensed matter physics: the statistical properties of a “gas” 
of independent, identical, quantum particles subject to Pauli Exclusion: no more than one particle at a 
time may occupy any given single-particle quantum state of the system (such particles are collectively 
called fermions; it turns out that all elementary particles of matter, such as electrons, are fermions). The 
discussions here and in the next section closely follow that found in Chapter 2 of N. W. Aschroft and N. 
D. Mermin, Solid State Physics (1976, Thomson Learning, Inc.). 

In order to apply the principle of Pauli Exclusion when considering a statistical system, one must have 
some idea of how to organize and count its available single-particle quantum states. Consider first our 
old friend, the quantum states of an otherwise free particle in a one-dimensional box. The wave 
functions of the desired single-particle states shall represent traveling waves with well-defined 
momenta, however, and we demand that the boundary conditions imposed by the walls of the box be 
periodic ( or Born-von Karman): the phase of the wave function for a state must be the same at both 
walls. Thus the total phase of a wave function across the length L  of the box must be an integer 
multiple of 2π ; successive wavenumbers of the momentum eigenstates are separated by 2k Lπ∆ = . 
Note that this result is consistent with the uncertainty principle: With the particle’s position confined to 

x L∆ = , successive momentum eigenstates are separated such that 2x k π∆ ∆ = , so each may be said 
to occupy a phase space volume of x p h∆ ∆ = , since the particle’s momentum p k=  . 
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The previous result is easy to extend to a 3-dimensional volume x y zV L L L= . A momentum eigenstate 
represented by ˆ ˆ ˆx y zp p x p y p z= + +



 must occupy a phase space volume of 3 3( )i ix p h∆ ∆ = , so, since 

x y zi j kx x x L L L V∆ ∆ ∆ = = , the momentum eigenstates each occupy a momentum-space volume of 
3 3p h V∆ =


. If the volume is macroscopic, then these single-particle eigenstates are very densely 
packed in momentum space — a large momentum-space sphere of radius 1/3

maxp h V  would 
contain almost exactly 3 3(4 3) ( )maxN p V hπ=  possible single-particle states with momenta maxp≤  
in a 3-dimensional box of physical volume V . 

A single fermion has an additional, internal degree of freedom determining its quantum state: its spin 
polarization. Fermions must have half-integral total spin quantum numbers; in the case of an 
elementary fermion such as an electron, this total spin quantum number is 1 2 . Thus an electron has 
two possible spin polarizations: ±1 2  (i.e. “spin up” and “spin down”). This extra degree of freedom 
doubles the number of possible states for an electron so that the number N  of single-electron states in 
a volume V  with momenta maxp≤  given by: 

 3 3(8 3) maxN V p hπ=   (B.15) 

If these states were all occupied by electrons (only a single electron allowed in each state!), then 
n N V=  would be the resulting number density of the electrons in V . Conversely, if the volume V  
contains N  independent electrons, then the lowest total kinetic energy state of this N  electron 
system would be obtained by filling the available states starting with the lowest momentum states; the 
electrons would then occupy the all the available states with momenta maxp≤  given by (B.15). This 
would be the ground state of the N  independent electron system in V ; maxp  is called the Fermi 
momentum of this system. 

The kinetic energy of the electrons with momenta maxp  in this ground state of a system of independent 
electrons with volume number density n N V=  is called the Fermi energy: 

 
2 32 2

2
3 ( )

2 8 2F
maxp n hcE
m mcπ

 = =  
 

  (B.16) 

For example, copper has a conduction electron density of n = =23 3 30.85 × 10 cm 0.085 Å ; with the 
electron rest energy 2mc = 0.51MeV  and hc = 12.4keVÅ , the Fermi energy FE = 7eV . This energy is 
(not surprisingly) essentially the same as the binding energy of a copper atom’s outer valence electron, 
7.7eV , since n1 , the volume per conduction electron in solid copper, is nearly equal to the average 
volume a copper atom’s outer valence electron occupies. 
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The density of single-electron states as a function of electron kinetic energy is straightforward to 
calculate. From (B.15) it is clear that a thin spherical shell in momentum space with radius p and 
thickness dp would contain ( )dn dn dp dp= single-electron states (per unit physical volume); in terms 
of energy, the number would be ( ) ( )dn dn dp dE dp dE= . Thus the number of single-electron states 
per unit volume per unit energy (cf. equation (B.7)) is clearly ( ) ( ) ( )g E dn dp dE dp= : 

 
1 23 2

3 3
3( ) 8 ( ) 8 2 ( 0)
2 F F

dn m m n Eg E p E E E
dE h h E E

π π
 

= = = = > 
 

  (B.17) 

The average kinetic energy per electron is thus: 

 1
0

3( )
5

FE
Fn g E EdE E− =∫   (B.18) 

This is the average electron kinetic energy for the ground state (T = 0 ) of a system of free and 
independent electrons with volume density n; if the electrons behaved classically, then, of course, their 
average kinetic energy would be (3 2) Bk T , which is 0 in the ground state (see previous section). A 
classical gas of electrons would require a temperature of (2 5) F BT E k=  to have the average kinetic 
energy of equation (B.18) ( 4> 3 × 10 K for the conduction electrons in copper, with FE = 7eV ). Clearly, 
one would expect that this fact should have a profound influence on the observed electrical and thermal 
properties of a conductor such as copper. 

• The chemical potential and the Fermi-Dirac distribution 

Now consider the statistics of a system of independent, identical fermions (with a fixed number of 
particles in a fixed volume V ) in thermal equilibrium with a heat bath at temperature T > 0 . Pick a 
particular single-particle quantum state j of the system (with particle energy jE ), and ask for the 
probability jf  that this state is occupied by a particle.  

The microstate of such a system of particles would be specified by enumerating which single-particle 
quantum states are occupied and which are empty; the microstate’s energy would then be the sum of 
the energies of the occupied single-particle states (remember, simply swapping two particles doesn’t 
count as forming a different microstate because all of the particles are absolutely identical). The 
probability of finding a system in thermal equilibrium with a heat bath at temperature T in a particular 
microstate r with system energy rU  is given by (B.6) to be: 

 '

'

1 ; BB rr U k TU k T
r

rZ
p e Z e−−= ≡ ∑   (B.19) 

where the partition function Z is a sum over all microstates 'r  of the system. If the system contained N 
particles, say, then Z would be the sum over all the various ways that the system’s N particles could be 
distributed among all of the system’s possible single-particle states (often an infinite number).  
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Thus, in principle, to determine jf  we would first calculate the value of the N-particle system partition 
function, Z. Then we would simply pick out that subset of all of the possible N-particle microstates in 
which the single-particle quantum state j is occupied, calculate each microstate’s probability using 
(B.19), and then sum these probabilities; the result would be jf . Of course, the set of all microstates of 
our N-particle system consists of two disjoint subsets: those in which the single-particle quantum state j 
is occupied, and those in which it is empty — the probability that the single-particle quantum state j is 
occupied must be 1 minus the probability that it is empty, since these are the only two possibilities. 

Now consider two otherwise identical systems: one with N particles and the other with N + 1. In the 
latter system consider the set of microstates in which state j is occupied, whereas consider the set of 
microstates with empty state j in the N-particle system. Clearly, every microstate in the former set has a 
corresponding microstate in the latter: namely, the one whose only difference is the occupation status 
of state j. Order and index the members of the two sets with the index r such that corresponding 
microstates have the same index value. Obviously, the energy difference between any pair of 
corresponding microstates is just the energy of the state j, which is jE . Call the various (N + 1)-particle 
occupied-j microstate energies rU ; the corresponding N-particle empty-j microstate energies will then 
be jrU E− . 

Using the set of occupied-j microstates of the (N + 1)-particle system and the empty-j microstates of the 
N-particle system, the occupation probabilities may be written: 
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  (B.20) 

We now define a new quantity F in terms of Z as follows: 

 lnBF k T Z= −   (B.21) 

F is called the Helmholtz free energy of a thermodynamic system (it turns out that for a system in 
thermodynamic equilibrium F U T S= − ). This thermodynamic potential was first introduced by the 
nineteenth-century German physicist (and physician) Hermann von Helmholtz. In terms of F the ratio of 
the two partition functions may be written as exp[ ( ( 1) ( )) ]BF N F N k T− + − . The change in the free 
energy introduced by the addition of a particle to a system (at constant T and V) is called the chemical 
potential μ, a concept which is especially useful when considering phase changes and chemical 
reactions. With the chemical potential, (B.20) may be written as: 

 
( )( ) 1 ( 1)j BE k T

j jf N e f Nµ−
= − +   (B.22) 

The expression (B.22) is exact, but we can now make the simple observation that for a macroscopic 
system (in which 2210N  , give or take several orders of magnitude), adding one more particle to it 
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should have a tiny impact on the occupation probability of a typical single-particle state j. Thus, it is 
quite reasonable to assume that to an excellent degree of precision ( 1) ( )j jf N f N+ = . Using this very 
slight approximation, we achieve our final result, the Fermi-Dirac distribution: 

 ( )
1

1j B
j E k T

f
e µ−

=
+

  (B.23) 

The Fermi-Dirac distribution is a major theoretical result fundamental to our understanding of the 
thermal and electrical behaviors of electrons in conductors and semiconductors. We may draw some 
immediate conclusions from (B.23): 

• If BjE k Tµ−  , then exp[ ( ) ]j Bjf E k Tµ≈ − −  
• If BjE k Tµ −  , then 1jf → . 
• At 0T = : FEµ = , the Fermi energy 

If BjE k Tµ−   for all but a tiny minority of the lowest-energy single-particle states, and N is much 
larger than the number of these very low energy states, then for all but these few lowest-energy states 
it is the case that 1jf  . Thus the states occupied by the vast majority of the N particles at any given 
instant are well-separated in phase space, i.e. the average phase-space separation between nearby 
particles is h . In this case to an excellent approximation the particles behave classically (except that 
they remain indistinguishable when counting possible microstates). Examples of this situation are: the 
charge carriers in a typical semiconductor; the electrons in a hot, tenuous plasma; and the molecules in 
air at standard temperature and pressure. 

If, on the other hand, ~ 1jf  for most of the single-particle states actually occupied by a system’s 
particles, then the quantum nature of the particles will be a predominant feature of the system’s 
kinematics. The particles in such a system are called degenerate, and quantum effects will have a major 
impact on the macroscopic characteristics of the system. The most important example of such a system 
is the behavior of the conduction electrons in a metal. 
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