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Experiment 1  
Introduction to analog circuits and operational amplifiers 

Electronic circuit design falls generally into two broad categories: analog and digital (a third 
category, interface circuitry, includes hardware to join these two major circuit realms). 
Digital circuitry, as you probably already know, uses electronic components and systems to 
represent and store numerical data and to perform algebraic and logical operations on the 
data. Incredibly complicated digital structures are created by combining a few simple circuit 
building blocks (such as registers, gates, and clocks) into vast networks of components. 

Analog circuitry, in contrast, is used to respond to continuously-variable electrical signals 
from sensors (such as microphones, thermistors, antennas, and accelerometers) or to provide 
continuously-variable control signals to actuators (such as loudspeakers, heaters, antennas, or 
motors). Analog circuitry is used, for example, to connect digital computers and circuits to 
many of the physical devices they use for data I/O and storage. Our focus in this course will 
be mainly on analog designs. 

Probably the most important application of analog electronic circuitry (especially in the 
sciences) is to amplify and filter the power of a minute signal so that it can be accurately 
measured or used to control something interesting. In this experiment you’ll jump right in 
and start designing and building simple, useful amplifier circuits using that truly marvelous, 
tiny building-block of modern analog electronics: the operational amplifier. 

Before you can begin to understand how to construct such amplifiers, you must understand 
some pretty basic concepts concerning what sorts of elements make up electronic circuits and 
how they work together in a design. The first several pages that follow cover these basic 
ideas; the information may be dry and dense, but it is important that you read it! Hopefully 
much of the following section is a review of what you already know, but, if not, familiarize 
yourself with the content so you can quickly refer back to it when the time comes.  

Next the text covers the behavior of an ideal operational amplifier (op-amp) and why this 
behavior makes it so versatile and easy to use by incorporating negative feedback. Finally we 
cover some additional concepts which will prove useful as you analyze and design circuits. 
The Prelab Exercises will test your understanding of this material and give you some 
practice in preparation for your lab session. Complete them and come to your recitation 
session ready to ask (and answer!) questions about the material. 

One auxiliary, but very important, objective of this experiment is to give you some initial 
experience using the lab electronic equipment: signal generator, oscilloscope, cabling, and, of 
course, the analog trainer/breadboard you use to construct your circuits. 
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CIRCUIT BASICS 

Current, voltage, power 
Current is the flow of electric charge from place to place. Electronic circuitry employs 
networks of narrow, highly conductive elements (copper wiring or traces on printed circuit 
boards) to effectively confine the flow of charge to well-defined paths. Current is defined as 
the measure of the rate of charge flow through a surface (typically the cross section of a wire) 
and is measured in the SI unit ampere (amp, or A). The SI unit of charge is the coulomb, 
which is defined such that 1 A = 1 coulomb/second. An amp is a very large current for 
small, table-top circuit designs; our electronic circuits will have currents of about 710−  amp 
to 210−  amp, so we’ll most often be dealing with currents of microamps (uA or μA) to 
milliamps (mA). 

Currents are generated by the motions of charge carriers in the circuit in response to electro-
motive forces induced by electromagnetic fields. As a charge carrier moves about, its 
potential energy due to the fields varies. The work done on the charge by the fields is equal 
to the reduction in potential energy of the charge as it changes position. The potential energy 
per unit charge due to an electric field is called the electrostatic potential (or just potential) 
and is measured in the SI unit volt (= 1 joule/coulomb). We have various ways of 
establishing either steady or time-varying potentials in our circuits: power supplies, signal 
generators, and batteries. These devices also serve as sources and receivers of charge 
carriers, so that the circuit to which they are connected remains electrically neutral (no net 
charge). In our circuits maximum voltages are no more than ~12V, and signals have 
amplitudes of a fraction of a millivolt (mV) to a few volts.  

Assume a circuit has charge carriers flowing steadily from a point A to a point B at potentials 
Av  and .Bv  If the current flowing is ,ABi  then the power being expended by the source of the 

potential difference must be ( ) .A B ABP v v i= −  If the potentials and the currents are time-
varying, but the instantaneous current out of A remains equal to that arriving at B, then the 
current between the points remains a well-defined function of time, and we have the 
instantaneous power: ( )( ) ( ) ( ) ( ).A B ABP t v t v t i t= −  Our circuits will have power flows on the 
order of a few tenths to about a hundred milliwatts (mW). 

A component which can continually add power to a circuit is called an active element. Other 
components (most of which dissipate power or otherwise remove it from the circuit) are 
called passive elements.1 

                                                 
1 Electrical engineers often refer to semiconductor devices such as transistors and integrated circuits as active 
elements, because these devices can transfer power from a steady power source into a signal circuit. 
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Frequency, wavelength, lumped circuit elements 
Electromagnetic fields propagate at the speed of light, 30 cm/nanosecond (or about a 
foot/nanosecond). One nanosecond is the period of a signal oscillating at a gigahertz (GHz, 

910  hertz). The maximum frequencies we’ll be using in our circuits are no more than a few 
megahertz (MHz) or kilohertz (kHz), so the wavelengths of these fields will usually exceed 
hundreds of meters, hundreds to thousands of times bigger than the physical sizes of our 
circuits. Consequently, but maybe not so obviously, each individual element in a circuit will 
have, to a high degree of accuracy, no change in its total net charge as the fields oscillate. 
Thus we may safely assume that there is zero net total current flow into or out of all of an 
element’s connections to the circuit at any instant. Such a component is called a lumped 
element. Examples of lumped elements are the resistors, capacitors, LEDs, and integrated 
circuits (ICs) we’ll be using.  

In the high-frequency case, where wavelengths become comparable to the size of a 
component, the fields and currents may vary across it, making it a distributed element, and 
our assumption above is no longer valid. Examples of distributed elements include antennas, 
microwave waveguides, the motherboard in your computer or tablet, and the national 
electrical power grid. 

Most of the elements we use in our circuits — resistors, capacitors, inductors, diodes, 
batteries, etc. — have two terminals for connections to circuit conductors, making them 
lumped, two-terminal elements (note that any lumped element will have at least two 
terminals, since the total current flow into the element’s connections must vanish, as 
described above). Pictured in Figure 1-1 is a selection of symbols for typical two-terminal 
elements as used in an electrical circuit drawing, called a circuit schematic. Because the 
currents at the two terminals must be equal and opposite (flowing in at one terminal and out 
at the other, so the total net current into the element is zero) we can simply refer to the 
current flowing through the element and the potential difference (voltage) across it. 

 
Figure 1-1: Schematic symbols for a selection of two-terminal, passive circuit elements. Also shown 
with each symbol is an example of an associated reference designator to uniquely identify that 
component in a circuit. 

Sources and signals 
In most cases the independent variables in the set of equations we will write out to describe 
the behavior of a circuit are a few voltages or currents we control as inputs to the circuit; the 

Resistor Inductor Diode Switch Capacitors LED Speaker
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equations then allow us to determine the circuit’s outputs in response to the inputs. The 
independent inputs are termed sources or signals, and may be generated by batteries, power 
supplies, signal generators, microphones, antennas, thermocouples, or whatever else we can 
think of which produces a potential (voltage source) or injects a current (current source) into 
our circuit. Sources are usually described as two-terminal devices in our circuits and are 
active elements since they inject power into the circuit. If a source produces a constant output 
(such as a battery or power supply), then it is called a DC source (for “direct current”). If its 
output is sinusoidal, then it is an AC source or signal (for “alternating current”). 

 
Figure 1-2: Schematic symbols for common voltage and current sources; each is a two-terminal, 
active element. Polarity or current flow has the direction indicated when the source output is 
positive. The battery symbol will often be used to represent any constant-voltage (DC) source such 
as a power supply. The other sources may be constant or time-varying (an “AC source” usually 
means that its output varies sinusoidally – V2 in the figure represents an AC voltage source). 

The schematic symbols for some common active sources are shown in Figure 1-2. These 
sources are considered to be ideal, in the sense that each can maintain its specified output 
voltage or current regardless of what they may be connected to in the circuit and how much 
power they must supply. Of course, real sources are not quite so capable! The polarity or 
current direction included with the schematic symbol shows the relative potential or current 
flow when the source output has a positive value. 

Grounds and power supply terminals 
The fields in our circuits produce potential differences and corresponding current flows. 
Because only potential differences are significant, we will pick one convenient point in a 
circuit and define it as having zero potential (0 Volts); all other voltages in the circuit will be 
measured or specified with respect to this point. The symbol used in this text for the 0-Volt 
reference point is a triangle: . We refer to this point as the circuit ground, and a terminal 
connected to this point is said to be at ground potential or to be grounded. 

We will use a couple of conventions when drawing our circuit schematics which will 
considerably reduce the clutter in them. The amplifiers you will build will require DC power 
from a power supply or batteries in order to operate properly, so these constant-voltage 
power sources must be indicated in our circuit drawings. Additionally, often several 
components in the circuit (including the power supply) will have terminals connected 
together and to the 0-Volt reference point (ground). A power supply schematic drawing 

Battery Voltage
sources

Current
sources
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simplification is shown in Figure 1-3; instead of explicitly showing the power supply source 
symbols, we’ll put little arrow symbols with their associated voltages at whatever points need 
to be connected to the power supply (as shown on the right in Figure 1-3). Wherever these 
symbols appear, you must remember that physical wiring connects all symbols with the same 
voltage to the appropriate terminal of the power supply source. Similarly:  

Multiple ground symbols appearing in a schematic are all implicitly connected 
together and are connected to the appropriate power supply return terminal, which 
also serves as the 0-Volt reference point for the circuit (as shown in Figure 1-3). 

 
Figure 1-3: Simplified schematic diagram depiction of a power supply. Multiple arrow symbols 
labeled with the same voltage (such as +12V) may appear in a diagram. All must be considered to 
be connected together and to the appropriate power supply source terminal. Similar 
considerations apply to the appearance of multiple ground symbols in a diagram. One power 
supply terminal is connected to ground as well, as shown above. The voltage labels always give the 
voltage values with respect to ground, which is the 0-Volt reference point. 

 

Resistors 
The two most common two-terminal, passive elements we will use are the resistor and the 
capacitor (another common element, the inductor, is mostly used in radio-frequency circuits; 
we’ll discuss the capacitor and inductor in later experiments). These elements are important 
to study first, because each of them has a simple, linear relationship between the voltage 
across and current through it (at least to a very good approximation, for low frequencies and 
voltages). You will generally find that your designs will contain more resistors and capacitors 
than the combined total of all of the rest of the components in the circuits. 

Let’s start with the resistor and its famous Ohm’s law. Figure 1-5 on page 1-5 shows a 
variety of resistors with different physical sizes, shapes, uses, and power ratings; the ones 
you will use when “bread-boarding”  prototype circuitry will look like the small, light-brown 
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resistor towards the upper left in the photo. If we connect a resistor to a voltage source (a 
power supply or signal generator) as shown in Figure 1-4, then, obviously, there will be a 
voltage across the resistor and a current flowing through it. Figure 1-4 shows the usual 
conventions for the polarity of the voltage and direction of the current flow when the 
potential ( ) 0v t > .  

 
Figure 1-4: A simple circuit illustrating Ohm’s Law for a resistor with value R. 

Since the lines connecting the elements’ terminals in a schematic diagram are considered to 
be perfectly-conducting wires, terminals connected by a wire in the diagram must have 
identical voltages, and current will flow through the connection without any change. Thus, if 
the output voltage of the source in Figure 1-4 is v(t), then that is also the voltage across the 
resistor R. Ohm’s law states that the voltage v(t) across a resistor and the current i(t) through 
it are strictly proportional at any instant: 

 Ohm’s law for a resistor 
1.1 ( ) ( )v t R i t=  

The constant of proportionality, R, is called the resistance of the resistor and has SI units of 
Ohms: 1ohm = 1volt/amp. For an ideal resistor R is a real, constant number (independent of 

( )v t ( )i t( )v t
+

–

( ) ( )v t R i t= ×

 
Figure 1-5: A variety of resistors, from the tiny (.08 inch × .05 inch) surface-mount component 
barely visible near the upper left corner of the photo (see arrow) to the beefy, 100 Watt power 
resistor to the upper right. The long resistor in front is designed to be used with very high voltages. 
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voltage, current, or frequency) with R≥ 0. Equation 1.1 is the defining relation for an ideal 
resistor; the actual resistors you will use behave in a very nearly ideal manner. The circuits 
we build will have voltages mostly in the range of a few tenths to a few volts, and currents of 
a few microamps to a few milliamps. Thus the useful range of resistor values is a few 
hundred to a few million ohms (MΩ). Commonly used values should be 310  to 510  ohms (1 
to 100’s of kΩ). 

The elegance of the lowly resistor lies in Ohm’s Law, equation 1.1: a resistor is a cur-
rent to voltage converter (and vice versa)! If we have a wire with, say, a few 
milliamps of current flowing in it, then inserting a 1.0 kΩ resistor (kΩ: kilo-ohm =103 
ohms) in the circuit will produce a voltage across it of  1.0 V/mA, faithfully following 
any variation in the current flow. Conversely, if we put a known voltage across a re-
sistor, then we can immediately calculate the resulting current flow through it. 
These facts will be of enormous importance when you design and analyze various 
amplifiers during this course! 

Series and parallel resistors 

 
Figure 1-6: Series and parallel resistor combinations. For the series case, the same current flows 
through all resistors, and the total voltage is the sum of the individual resistor voltages. For the 
parallel case, the voltage is the same across all resistors, whereas the total current from the source 
is the sum of the individual resistor currents. The results are that series resistances add; parallel 
conductances (1/resistance) add. 

A common situation when analyzing part of a circuit is to find that two or more resistors (or 
other components) are connected in series or in parallel, as illustrated in Figure 1-6. The 
problem is to determine the equivalent resistance of such a combination, that is, the 
relationship between the voltage and current across the entire array of components. The 
solution is straightforward once you recognize that: 

1R
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( )v t
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• Series combination: the same current must flow through all resistors, and the total 
voltage across them must be the sum of the individual resistor voltages. 

• Parallel combination: the same voltage appears across all resistors, and the total current 
must be the sum of the individual resistor currents. 

Consider the series combination first. Referring to Figure 1-6, the voltage across the k th 
resistor is ( ) ( )k kv t R i t= , so the total voltage is series( ) ( ) ( )kv t i t R R i t= =Σ , where seriesR  is the 
equivalent series resistance we seek. In the parallel case, ( ) ( ) ( ),k k kv t v t R i t= =  so 

( ) ( ) ./k ki t v t R=  The total current is therefore parallel( ) ( ) (1 ) ( )/ /ki t v t R v t R= =Σ , where 
parallelR  is the equivalent parallel resistance. The equivalent resistance (resistance seen by the 

source) for each case is then: 

1.2 

N

series
1

N

1parallel

Series combination:

1 1Parallel combination:

k
k

k k

R R

R R

=

=

=

=

∑

∑
 

The reciprocal of resistance is called conductance, and has the SI unit Siemens ( 1ohm−= ). 

Series resistances add. Parallel conductances add. 

Using the second of equations 1.2 for the case of only two resistors, we can derive the more 
familiar equation for two parallel resistors, 

 1 2
parallel

1 2

R RR
R R

=
+

  

which is less elegant than the more general expression in 1.2. 

Now let’s ask what the voltage drop across any particular resistor would be for our set of 
series resistors in Figure 1-6. The voltage across the k th resistor is ( ) ( )k kv t R i t= , and 

series( ) ( )i t v t R= , so we get expression 1.3, which may seem pretty obvious: 

1.3 
series

( )
( )

k k kv t R R
v t R R

= =
Σ

 

Thus the ratio of the voltage across one resistor to the total voltage is just the ratio of the 
resistor’s value to the total resistance in the series. This result segues nicely into our next 
topic. 
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Voltage dividers and the potentiometer 
The result 1.3 for a series-connected pair of resistors provides the solution for the behavior of 
the very common voltage divider circuit, Figure 1-7. 

 

1.4 2

1 2

out

in

v R
v R R

=
+

 

Figure 1-7: The voltage divider is just a series combination of two resistors. The input voltage, vin , is 
the source voltage applied across both resistors; the output voltage, vout , is the voltage across the 
bottom resistor of the pair. The gain of the divider is defined as G = vout /vin , and is trivial to derive 
from equation 1.3. The circuit on the right is the same voltage divider, but assumes that a source of 
voltage is applied between the two input terminals rather than explicitly showing the source. 

The voltage divider configuration of two resistors (or other types of elements) will 
show up again and again in the circuits we will design and build. It would be wise for 
you to commit the schematics in Figure 1-7 and the formula 1.4 to memory! 

   
Figure 1-8 (left): A selection of potentiometers. All except the one at the bottom of the photo are 
adjusted by turning a shaft. The bottom device clearly shows how a potentiometer is constructed, 
in this case from a long coil of high-resistivity wire, such as nichrome. The two ends of the resistive 
element are attached to terminals on the device; the adjustable wiper contact is attached to the 
remaining terminal. 

Figure 1-9 (right): A potentiometer with total resistance R used as a variable voltage divider. As the 
wiper position is adjusted from bottom to top, vout  varies from 0 to vin. 

inv

outv

1R

2R outvinv 2R

1R

inv
outv
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Often we will need a voltage divider with a gain ( out inv v ) which is easy to adjust. The 
potentiometer is a circuit element designed for just this job! A potentiometer (or, sometimes, 
rheostat or variable resistor) is a resistor made from a relatively long, partially-exposed 
resistive element. An electrical contact (wiper) may be moved along the exposed resistive 
element from one end to the other, varying the ratio of the resistance between the wiper and 
one end of the resistor to the total resistance (see Figure 1-8). 

Figure 1-9 shows how a potentiometer may 
be used as a variable voltage divider. In this 
circuit the output voltage may be varied from 
0 all the way up to the input voltage. This is 
how a volume control is implemented in 
many audio devices, with vin  representing an 
audio signal (the “wiper position” in a 
modern device is usually controlled using a 
digital logic circuit). Other useful 
potentiometer circuits are shown in Figure 
1-10; examples will come up throughout the 
course. 

Networks, ports, gain 

In Figure 1-7 (on page 1-8) the right-hand voltage divider sub-circuit (portion of a larger 
circuit) is our first example of a two-port network, a common general construction useful for 
analyzing circuits. Other important examples of two-port networks include amplifiers and 
filters. Consider Figure 1-11, which explicitly shows how we identify our voltage divider as a 
network with a single input port and a single output port. Each “port” of a network comprises 
two terminals which are meant to be connected into some larger, surrounding circuit. This 
surrounding circuit will, in general, inject signals (voltages and currents) at our network’s 
input ports, and will it respond to signals emitted from the network’s output ports. 

   
Figure 1-11: The voltage divider is a form of two-port network. It has a pair of input terminals, the 
input port, and two output terminals: the output port. In this example, the network’s transfer 
function (or gain function) is the ratio vout /vin , as already mentioned in Figure 1-7, page 1-8. 

outvinv outvinv

2-port
Network

(black box)Becomes

 
Figure 1-10: Other potentiometer circuits. 

(a) adding a resistor in series at either end 
so that vout  varies over a smaller range 
for finer control  

(b) using a potentiometer as a variable 
resistor 

(a) (b)
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This network concept is useful because we can often describe its behavior (as far as the 
external, surrounding circuit is concerned) with just a few equations or parameters and 
otherwise ignore its detailed internal construction. The network becomes a “black box” with 
inputs and outputs whose relationships are known, but we don’t have to bother with the 
messy details of what’s inside the box. This is exactly how we are going to handle 
operational amplifiers in the next section! 

The most important parameter we will use to describe a “generic” two-port network 
is its gain, or, more generally, its transfer function, which describes the functional 
relationship between its output and its input.  

If the network is linear (as is the voltage divider) the gain function becomes a simple, fixed 
ratio independent of the size of the input. For example, the gain of the voltage divider 
( )out inv v  depends only on the resistors’ values and is therefore independent of the 
magnitude of vin  (see Figure 1-7). Other important network parameters (discussed in a later 
section) are its input impedance and output impedance.  

One final comment about the depiction of a network and its ports: often, one terminal of a 
port will be directly connected to ground (the 0-Volt reference) somewhere inside the 
network’s circuitry. In this case it is common to show only one terminal for that port, the 
ground connection being understood as the port’s other terminal, as shown in Figure 1-12. 
Since ground is the 0-Volt reference, the voltage of the one explicitly-depicted terminal is 
also the voltage present at the port (right-hand circuit in Figure 1-12). If neither terminal is 
actually connected internally to ground, as in Figure 1-11, then the voltage at the port is the 
difference in the voltages of its two terminals.  

   
Figure 1-12: A network whose ports each use ground as one terminal. In this case the ground 
terminal is often not shown explicitly, so only a single terminal is shown for such a port. Since 
ground is our circuit’s 0-Volt reference, the voltage of the single terminal is sufficient to determine 
the voltage of the port. 

outvinv Network
outvinv Network

(implied ground 
terminal on each 

port)
Becomes
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THE OPERATIONAL AMPLIFIER 

 
Figure 1-13: A photo of an IC operational amplifier, the Texas Instruments Inc.’s TL082 device. This 
integrated circuit is the type you’ll use for your circuits in this experiment; it actually contains two 
independent op-amps in the package shown (called an 8-pin DIP, for “dual-inline package”). The 
spacing of the connector pins in one row is 0.10 inch (2.54mm); the two rows are 0.30inch apart. 
(Photo courtesy Texas Instruments Inc., ©2012) 

The ideal op-amp 
The most important single element we’ll use for our analog circuit designs is the operational 
amplifier (op-amp). Modern operational amplifiers are examples of analog integrated circuits 
(ICs), wherein an entire network of dozens (or even hundreds) of transistors, resistors, and 
even capacitors is created on a single small silicon wafer. The wafer is then mounted inside a 
(usually) plastic package with several external metal pins used to make electrical connections 
to the wafer’s circuitry (Figure 1-13). 

Modern IC op-amps are the culmination of decades of improvements and innovations by 
hundreds of electrical engineers at dozens of companies; they have outstanding linearity, 
gain, bandwidth, and noise performance (these terms will mean more to you as the course 
goes on). Because of this spectacular performance available for our designs, we will first 
learn how to design amplifier circuits using an ideal operational amplifier, which is, 
naturally, an idealization of an actual op-amp’s behavior. As you’ll discover when you get to 
the lab, your real op-amps will perform so well that your results will approach very closely to 
this ideal! 

You should envision our ideal operational amplifier to operate like the “cartoon” diagram in 
Figure 1-14; right now we will consider the op-amp to be a 4-port network. There is an input 
port whose two terminals are labeled +Input and −Input (with voltages of v+ and v− , 
respectively). You should think of these two terminals as being connected to a perfect 
voltmeter inside the op-amp; this voltmeter measures the voltage difference between the two 
terminals as indicated in Figure 1-14. By “perfect” we mean that the voltmeter is sensitive to 
any tiny difference in the two terminals’ voltages, and that it does not draw any current at all 
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from whatever circuit is connected to an input terminal — each input has infinite input 
impedance. 

The ideal op-amp also has two power supply ports: the V+ Power and the V− Power 
terminals and their associated, implicit ground terminals (implicit ground terminals like those 
in Figure 1-12 on page 1-10). The V+ Power and V− Power terminals will always be 
connected to a DC power supply for our circuits; the lab’s circuit design trainer has +12V 
and −12V power with a common ground connection as shown way back in Figure 1-3 on 
page 1-4. You should think that inside the op-amp these two power terminals are connected 
to either end of a potentiometer as shown in Figure 1-14; the potentiometer’s wiper is 
connected to the op-amp’s Output terminal (the Output port also has an implicit ground 
terminal). 

Now think of some little “technician” ensconced inside our ideal op-amp whose only job is to 
watch the input voltmeter and move the potentiometer’s wiper depending on what the meter 
shows. If the +Input and −Input terminals have exactly the same voltage (so the voltmeter 
reads 0), then the technician stops moving the wiper or leaves it where it is; the output 
terminal is thus going to be at some constant voltage between those of  the V+ Power and the 
V− Power terminals. If there is a voltage difference shown by the input voltmeter, then the 
technician starts moving the potentiometer wiper very rapidly — toward V+ Power if 

,v v+ −>  or  toward V− Power if v v+ −<  (see Figure 1-14). For the ideal op-amp, the output 
voltage will change infinitely quickly as long as the two input terminals are at different 
voltages. And that’s it! That’s all that the ideal op-amp is supposed to do! 

 
Figure 1-14: Cartoon illustrating the ideal op-amp’s behavior. A “voltmeter” monitors the potential 
difference between the + and – inputs; if the two input voltages match, then the output voltage 
remains unchanged. If there is a voltage difference between the two inputs, then the op-amp very 
quickly changes the output voltage vout: increasing vout if v+ > v– , decreasing it if v+ < v– . The output 
stops changing only when the two input voltages again match (or when the “output 
potentiometer” has been adjusted all the way to one of its limits: a power supply terminal voltage). 
Since the source of the output comes from the op-amp’s two power supply terminals, electrical 
power required by the output load comes from the op-amp’s power supply, not the inputs. Output 
current supplied by the op-amp is returned to the power supply through the load, as shown (via the 
ground attached to other terminal of the load). 

–
+ Output

+ Input

– Input

V+ Power

V– Power

(Load)

vout

iout

v+

v–

Schematic
symbol
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 THE IDEAL OPERATIONAL AMPLIFIER’S CHARACTERISTICS AND BEHAVIOR 

• The two input terminals (+Input and –Input) draw 0 current from the external 
circuit (they each have infinite input impedance). 

• The Output voltage is constant whenever v v+ −= . 

• The Output voltage increases infinitely quickly whenever v v+ −> . 

• The Output voltage decreases infinitely quickly whenever v v+ −< . 

• The power for the Output comes from the V+ Power and V– Power terminals. 

The voltage follower and negative feedback 
So what can we do with such a thing as our ideal op-amp? First consider a very simple circuit 
known as the voltage follower (Figure 1-15). It is seemingly trivial — the op-amp’s output is 
connected back to its –Input terminal (so that v−  will always equal vout), and some sort of 
input signal is connected to the op-amp’s +Input, so inv v+ = . 

  
Figure 1-15: The voltage follower amplifier circuit. Note that the op-amp’s –Input terminal is 
connected directly to its Output terminal, whereas the input voltage source is connected directly to 
the +Input terminal (the op-amp’s two power supply terminals are not shown, but they still must 
be connected to a power supply!). If vout = vin , then v+ = v– , and the op-amp maintains the output 
voltage, vout . If the input voltage vin changes, then momentarily v+ ≠ v– , and the op-amp rapidly 
changes vout  in the same direction as the change in vin until the condition vout = vin , is restored. 
Thus the amplifier always keeps vout = vin , so the circuit’s voltage gain G = 1. 

If vin(t) is actually constant, then clearly an equilibrium condition for the op-amp would be 
out inv v= , because then v v− += , and vout  would remain constant. But what if vin(t) changes 

or there is some perturbation in vout  so that, momentarily at least, out inv v≠ ? Because we 
have connected vout  to the −Input terminal (not +Input!), then if, for example, outinv v>  , we 
would also have v v+ −> , so the op-amp would quickly increase vout  until the condition 

out inv v=  is restored. Similarly, the op-amp would correct the opposite condition, out inv v> . 

Thus it would always be the case that the voltage follower circuit (Figure 1-15) will maintain 
( ) ( )out inv t v t= , so the voltage gain of this simple amplifier is 1out inG v v= = .  

inv v+ =

outv v− =

outv

(Load)loadR

inv
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Make sure you study Figure 1-15 in light of the ideal op-amp behavior (box on page 
1-13) until you have convinced yourself that the voltage follower will always 
maintain ( ) ( )out inv t v t=  (unless inv  exceeds the limits set by the op-amp’s power 
supply voltages, which determine the maximum range of outv ). 

The voltage follower circuit has a stable, linear relationship between outv  and inv  
because the op-amp’s output voltage is connected back to its –Input terminal. This 
arrangement is an example of Negative Feedback, which is the secret to the 
versatility of the op-amp. 

How could an amplifier with a gain of 1 add any value to a system? Actually, you will find 
this circuit to be very useful and will possibly include one or more voltage followers in your 
final project design. The reason it is so useful is because the ideal voltage follower amplifier 
has infinite power gain: Since the input source is connected only to the op-amp’s +Input 
terminal, which draws no current, the power required from the input source is 

0 0in in in inP v i v= = ⋅ = , whereas the power delivered to the load attached to the amplifier’s 
output is 2 0out out out out loadP v i v R= = > : the power gain out inP P →∞ . The current drawn 
by the amplifier output’s load is supplied by the op-amp’s power supplies, so no power is 
required from the input source. 

The noninverting op-amp amplifier 
Now that you understand how the voltage follower works, let’s design a more general and 
flexible negative feedback setup using our ideal op-amp. Consider the circuit in Figure 1-16, 
where we now use a voltage divider consisting of resistors Rf  and Ri  to feed back only a 
fraction of  vout  to the −Input terminal (assume that a source voltage and a load resistor are 
again connected to our amplifier like those in the voltage follower circuit, Figure 1-15). The 

  
Figure 1-16: The general noninverting amplifier circuit. Now the op-amp’s –Input terminal is 
connected to the output via a simple voltage divider circuit, so only a fraction of vout is used as the 
negative feedback signal. As with the voltage follower (Figure 1-15), the input voltage source is 
connected directly to the +Input terminal. When the equilibrium condition v+ = v–  obtains, vout will 
be larger than vin by the factor G = (Ri + Rf)/Ri = 1+(Rf /Ri), which is thus the gain of this amplifier. 

inv v+ =
outv

fR

iRi

out i f

Rv
v R R
− =

+



  Introductory Electronics Laboratory 

1-15 
 

op-amp’s output voltage, vout , will be stable when v v− += , as before. We still have ,inv v+ =  
but now we must use the voltage divider equation (see Figure 1-7 on page 1-8) to determine 
v−  from vout; the resulting relation is shown in Figure 1-16. So at equilibrium v−  is smaller 
than vout  by a ratio determined by the voltage divider, and, since inv v v− += = , we see that 
vin  must be smaller than vout  by this same ratio.  Thus we now have an amplifier with a 
voltage gain G of whatever we want it to be (although 1G ≥ ): we just choose an appropriate 
pair of values for the resistors Rf  and Ri  (see equation 1.5) The amplifier is referred to as 
noninverting because vout  has the same sign as vin . 

 Ideal, noninverting amplifier gain 

1.5 1i f fout

in i i

R R RvG
v R R

+
= = = +  

Note that some current from the op-amp’s output must flow to ground through the 
noninverting amplifier’s voltage divider. This current demand upon the output will add to the 
current required by the amplifier’s load. In this case the current through our feedback 
network will be ( )f fout iI v R R= + , since the two resistors are in series (remember, 0 
current flows to the ideal op-amp’s  −Input terminal); using larger values for these resistors 
will reduce the required feedback current. 

The inverting op-amp amplifier 
Let’s start with the noninverting amplifier of Figure 1-16, but instead of connecting the input 
signal to the op-amp’s +Input terminal, let’s connect it to the bottom end of the feedback 
voltage divider; we then ground the +Input terminal. The result is the inverting amplifier 
circuit of Figure 1-17 (note that we’ve rearranged the locations of the components and 

  
Figure 1-17: The general inverting amplifier circuit. The input signal is attached to one end of the 
negative feedback voltage divider, and the +Input terminal is connected to ground. At equilibrium 
v+ = v– , and the point a becomes a virtual ground, since its voltage will be 0 as well. Since no 
current flows into the op-amp’s –Input, the current from the input source (iin) must also flow 
through Rf to the op-amp’s output terminal. The voltage across Ri is just vin; the voltage across Rf 
must be (Rf /Ri) times larger, because the currents are the same. Thus the gain G = –(Rf /Ri). 

0v+ =

outv

fRiR

0av v v− += = =

inv
ini → fi →

infi i=
a
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flipped the op-amp symbol so that the −Input terminal is above the +Input). You should 
closely compare the two circuits to convince yourself that the only change has been to swap 
the ground and source input connections. The inverting amplifier is a little harder to analyze, 
but there are a couple of clever shortcuts you can use to quickly derive the gain. These 
“tricks” are quite useful when analyzing op-amp circuits, so let’s carefully consider them.  

First, assume that the negative feedback works effectively, so that the op-amp continuously 
adjusts its output voltage as needed to maintain its equilibrium input condition v v− += . This 
implies, as shown in the figure, that the voltage at node (connection) a, where the two 
resistors are joined to the −Input, will be 0 (ground), even though there is no direct 
connection of this point to ground. For obvious reasons, therefore, the node a is called a 
virtual ground. Now we know the potential across resistor Ri: 0in inv v− = , so we 
immediately know that in in ii v R= . 

Now comes the second trick: since no currents flow into an ideal op-amp’s input terminals, 
the only place for the current iin  to go is to continue on through Rf , so f ini i= , and we now 
know the potential across Rf: 0f f out outR i v v= − = − . Thus we have derived the gain for the 
ideal, inverting amplifier: 

 Ideal, inverting amplifier gain 

1.6 fout

in i

RvG
v R

= = −  

The amplifier is call inverting because the sign of the output voltage is the opposite of the 
sign of the input voltage. The magnitude of this circuit’s gain may be chosen to be anything 
by picking values for Rf  and Ri , whereas the gain of the noninverting amplifier must be at 
least 1 (compare equation 1.5). There is one significant drawback to the inverting amplifier 
circuit, however: the current drawn from the input source is not zero. In other words, the 
input impedance ( in inv i ) of this amplifier is finite — in fact, it is equal to Ri . The concept of 
input impedance will be discussed in the next section, although we’ll forego the general 
definition of impedance until Experiment 2. 

Important caveat about the inverting amplifier circuit: If the source of the input 
signal has its own resistance (called its output impedance, discussed starting on page 
1-42), then that resistance will be in series with the circuit input, adding to Ri  and 
reducing the circuit’s gain. 

You should again convince yourself that the negative feedback from the op-amp output to the 
–Input is such that the ideal op-amp behavior will keep 0v v− += =  as the input voltage 
changes. Remember, the condition f outinR i v= −  is satisfied because the op-amp adjusts vout 
to make it so: it adjusts vout  until 0,v− =  and this will be the case only when 

( )fout i inv R R v= − . When you are confident that this is how the circuit works, you will 
have learned what you need to know about op-amps for now. 
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TECHNIQUES FOR ANALYZING CIRCUITS 

Circuit nodes and loops; Kirchhoff’s laws 
Now is probably the appropriate time to explicitly state the rules we’ve been using to 
determine the relationships between the voltages and currents in our circuits. We’ve already 
defined what we mean by a lumped circuit element, of which our resistors and op-amps are 
examples: a lumped element always has zero net current flowing into (or out of) it. It may be 
obvious, but let’s state it anyway: the same consideration applies to the connections (called 
nodes) between the terminals of our various elements. For 
example, the node illustrated on the right connects 5 
terminals of some assortment of elements (the placement of 
the “wires” and their connections at the dots are arbitrary and 
are chosen to make the schematic as readable as possible — 
all that matters is that this node makes a common connection 
to 5 different terminals). Our rule about currents states that, 
given the arbitrary way we’ve picked the directions for the current flows toward or away 
from each terminal, it must be true that 51 2 3 4i i i i i+ = + + . This rule is commonly known as 
Kirchhoff’s Current Law, named for the Prussian physicist Gustav Kirchhoff (1824–1887). 
If, when we use this rule and solve for the currents, we find that one or more of the currents 
has a negative value, this result just means, of course, that the actual current flow is opposite 
to the way we’ve drawn the arrow. 

It also must be noted that for any given node (such as that pictured above), the voltage is the 
same everywhere along it: i.e., all terminals connected together by a node are at the same 
voltage. In other words, the lines connecting terminals in a schematic are not supposed to 
represent any sort of “physical” model of real wires with some nonzero resistance. In our real 
circuits, though, if the physical distance between a pair of elements is large, and the current 
flow between them is substantial, then the wire you use to connect them may have enough 
resistance to introduce a noticeable voltage drop; in this case it would be wise to include the 
wire itself as another element in your schematic and in your calculations. 

Another rule relates the voltages across elements 
whose terminal connections form a closed loop in 
the circuit (of course, there must be at least one 
closed loop in our circuit, which is why it is 
called a circuit!). Consider a circuit fragment 
containing a loop like the one at right, where 
we’ve also labeled the voltage at each node of the 
loop. The loop voltage rule seems trivial when 
one labels the node voltages; it says that if we 
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pick any node and add up the voltage differences across the elements’ terminals as we go 
around the loop, the total voltage change must be zero. In other words, if we start at, say, 
node e (at voltage ev )  and then proceed clockwise around the loop, the voltage across the 
signal source takes us from ev  to av ; but if we proceed the other way, using the current-
voltage relationship appropriate for each of the elements, the calculated voltages across the 
elements must take us from ev  to dv  to cv  to bv  and, finally, again to av , the same as before. 
This obtains because the potentials of the nodes are all well-defined and single-valued, which 
will nearly always be true as long as our circuit is small compared to the wavelength of any 
nearby oscillating electromagnetic field (no magnetically-induced EMFs allowed around our 
circuit loops!). This rule is known as Kirchhoff’s Voltage Law. Using these current and 
voltage laws for our nodes and loops along with the current-voltage laws for the various 
elements (like Ohm’s law, equation 1.1) will give equations relating the various currents in 
the circuit and the voltages at the circuit’s nodes. 

A SIMPLE EXAMPLE OF HOW TO USE THE VOLTAGE AND CURRENT RULES 

Let’s illustrate the use of Kirchoff’s laws to solve for the unknown voltages and currents in 
the simple circuit shown in Figure 1-18. In this circuit a voltage source with voltage sv  
drives a network of three resistors; we wish to find the values of all of the various voltages 
and currents in the circuit shown in the figure in terms of the specified resistor values ( 1R , 

2R , and 3R ) and the source voltage ( sv ). 

 
Figure 1-18: A simple example illustrating how Kirchhoff’s laws are used to solve for the voltages 
and currents in a circuit. 

The circuit in Figure 1-18 has three nodes: node a connects the source and R1; node b 
connects R1 to R2 and R3; and node c connects R2 and R3 back to the source. The voltages at 
these nodes will be designated as av , bv , and cv , respectively. We’ll choose to use cv  as our 
voltage reference (ground), so by definition 0cv ≡ , as shown in the figure. Thus we have two 
unknown voltages: av  and bv . Also shown in the figure are three unknown currents: the 
current supplied to the circuit by the source, si  (which also must flow through resistor R1, as 
shown); and the currents 2i  (through R2) and 3i  (through R3). 

3R
si

2i

av bv

0cv ≡

sv

1R

2R
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These five unknowns are connected to the source voltage sv  and to each other by Kirchhoff’s 
voltage and current laws: 

(1) Clearly, by going up the left side through the voltage source: a c s sv v v v= + =   
(2) Following the current through R1, the voltage will drop across it: 1a sbv v R i= −  
(3) The voltage drop across R2 takes us back to ground: 2 20c bv v R i= = −  
(4) Ditto for the voltage drop across R3: 3 30c bv v R i= = −  
(5) The sum of the currents into node b must vanish, so: 2 3si i i= +  

Considering the sum of the currents into node c gives the same equation as (5), so this 
additional equation would be redundant. 

When writing down loop equations we must be careful about the direction of a 
current through an element and the sign of its associated voltage difference: if 
current flow through a resistor is positive (in the chosen direction of the arrow), 
then the voltage at the arrow’s tail must be greater than the voltage at its head, as 
shown in Figure 1-4 (on page 1-5). Note that equations (2)–(4) comply with this 
condition. 

The opposite is true for a power source: current leaves at the terminal with the more 
positive voltage and enters at the other. 

We have five independent equations for the five unknowns ( av , bv , si , 2i , and 3i ); these 
equations are straightforward to solve. If we define R



 as the equivalent resistance of the 
three resistors in parallel: 

 
1 2 3

1 1 1 1
R R R R

≡ + +


  

then a convenient way to express the solutions for the five unknowns is: 

1.7 1 1

2 3
1 2 1 3 1

1s
a s s

s s
sb

Rvv v i
R R

R R Rv vv v i i
R R R R R

 
= = −  

 

= = =



  

  

You should take a few minutes to show that this solution satisfies condition (5): 2 3si i i= + . 

Linear circuits and superposition 
The node and loop equations used in the previous example were linear, so that all of the 
various currents and voltages were proportional to the single source signal, sv . This is 
generally the case for circuits constructed from linear components like our ideal resistors. It 
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is also true for properly-designed, ideal op-amp amplifier circuits using negative feedback (it 
is not the case, however, for important nonlinear systems like digital circuits).  

Linear circuits are particularly straightforward to analyze, even if there are multiple, 
independent sources of voltages and currents embedded in them. In the case of a linear circuit 
excited by multiple sources, the solution for each unknown voltage or current will be given 
by a sum of terms, each term proportional to only one source: 

1.8 1 1 2 2 k kky a x a x a x= + + = ∑
  

where y is an unknown response (a voltage or current, either at the output or across one of the 
circuit’s components) and the sum is over the various input voltages and currents kx . The 
coefficients ka  of the various terms are derived from the circuit’s arrangement and its 
component values but are independent of the values of the sources.  

Because of this simple, linear structure for the solution, we can often determine the various 
coefficients ka  quickly by a simple procedure: if all but one input were equal to zero, then 
each unknown voltage or current is simply proportional to the single, nonzero source – the 
ratio of the unknown response y to that source is then the value of the corresponding 
coefficient   of its term in equation 1.8. By cycling through each input in turn you can then 
determine all of the coefficients, thus finding the general solution for the unknown voltage or 
current.  This is the Principle of Linear Superposition.  

IDEAL VOLTAGE AND CURRENT SOURCES SET TO 0 

Setting a voltage source to 0 is the same as replacing it with a short-circuit (wire) 
connecting its two terminals. 

Setting a current source to 0 is the same as replacing it with an open circuit (no 
connection at all) between its two terminals. 

Time for a few examples…  

A SIMPLE EXAMPLE USING LINEAR SUPERPOSITION 

Consider the circuit shown at right, with input voltage and current 
sources joined by a couple of resistors. We want to solve for the 
voltage drop 1v  across the resistor 1R  when the two sources are vs  
and is  (with the polarities shown). According to the general 
expression 1.8, we can write v1 as: 

1 s sv a v bi= +  

for some parameters a and b which can only depend on the two resistor values. We can first 
calculate the value of a by setting is  to 0 (so 1 sv a v= ), and then determining v1 in terms of 

1Rsv
si

+ −1v

2R
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vs . Similarly, we get b by setting vs  to 0. Following the directions in the box on the previous 
page concerning the sources, the equivent circuits for the two cases are: 

 

Setting is  to 0 (left diagram above) results in a simple voltage divider with input voltage vs , 
so the voltage across R1  is given by the voltage divider equation, as shown. Setting vs  to 0 
(right diagram) simply connects the two resistors in parallel, and their equivalent resistance is 
driven by the current is . The voltage across the parallel pair is then given by Ohm’s law, and 
this voltage would also equal v1. Note, however, that the polarity of the voltage across R1 due 
to is  is opposite to that induced by vs , as indicated in the two diagrams. Now use linear 
superposition: the voltage across R1 due to the simultaneous application of sources vs  and is  
is given by the sum of these two results, being careful of the relative polarities of their 
contributions. This gives us the final solution for the voltage across R1: 

( )1
1 2

1 2
s s

R
v v R i

R R
= −

+
 

THE INVERTING, SUMMING AMPLIFIER 

1R

2R
sv

1v+ −
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si+− 1v

0si ⇒ 0sv ⇒1
1

1 2
s

R
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R R
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R R

v i
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Figure 1-19: The inverting, Summing Amplifier. The node joining the resistors to the –Input is a 
virtual ground, so each input will be amplified independently of the others. The result is a weighted 
sum of the several inputs (inverted, of course) given in equation 1.9. 
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Now for a more important example of linear superposition. For this example we start with the 
inverting amplifier configuration, but this time with multiple input resistors and sources as 
shown in Figure 1-19 on page 1-21. We can solve for the circuit’s response to each of its 
various inputs by setting all but one to zero and using superposition. 

As discussed previously, the node connecting the resistors to the op-amp’s –Input is a virtual 
ground, with 0 voltage. Consequently, for each input set to 0 the associated input resistor (R1, 
etc.) will have no voltage across it, so the current through it must vanish as well. If no 
current flows through a resistor, then it could be removed without affecting the circuit! Thus, 
each zeroed input can have no effect on the amplifier’s behavior, so the amplifier will behave 
as a straightforward, inverting amplifier for the one active input, with gain given by equation 
1.6. By superposition, we can add such an inverting gain term for each input to give the result 
we seek for vout , a weighted sum of the various inputs: 

 Ideal, inverting, summing amplifier 

1.9 out k
k k

fR
v v

R
= − ∑  

As with our original discussion of the inverting amplifier, the current drawn from each input 
source will not be zero — each voltage source sees a load resistance equal to its input resistor 
Rk . If a source itself has nonzero output resistance, then that resistance must be added to its 
Rk  before using equation 1.9 (see the section Output resistance on page 1-42). 

GENERALIZING THE VOLTAGE DIVIDER 

As with the previous example, the ubiquitous voltage divider often appears in circuits in a 
more general form: several voltages connected to a single node through resistors or other 
components as shown in Figure 1-20. We would like a relatively simple, easy-to-remember 
formula for the resulting node voltage. 

 
Figure 1-20: A generalization of the voltage divider circuit. Several voltage sources are connected to 
a single node via resistors, and we want to know the resulting voltage at that node (vout). 
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Assume no current flows out of the terminal at vout . The resulting voltage vout , whose 
derivation we leave for the exercises, is then a weighted average of the various input 
voltages: 

 Generalized voltage divider output 

1.10 
( )
( )1 k

k k
out

v R
v

R
=
∑
∑

 

The weight of each voltage source is simply the conductance (1/R) of its connection to the 
common node. If all resistors have the same value, then vout  will be the arithmetic mean of 
the input voltages.  

You must be careful when designing with this circuit, because the current it draws 
from each source will depend on the values of the other source voltages: 

( )k k kouti v v R= − , and outv  depends on the values of all of the inputs. It is possible 
that current will flow into a source even when its voltage is positive! 

Keeping the above caveat in mind, we can construct a noninverting conterpart to Figure 1-19:   

 
Figure 1-21: The noninverting summing amplifier. The node joining the resistors to the +Input has 
the voltage given by the formula for vout in 1.10. Using a voltage follower configuration (Ri removed 
and Rf = 0) would give an output voltage given by the weighted average formula 1.10. 

If all of the resistors Rk  have the same value, then the voltage at the op-amp’s +Input will be 
the mean of the input voltages. This will then be multiplied by the noninverting amplifier 
gain (1 )/f iR R+  to result in the op-amp’s outv , that is (1 )/f iR R+  times the result from 1.10. 

THE DIFFERENTIAL AMPLIFIER 

For our final example consider an ideal op-amp amplifier, but this time we attach two 
independent voltage source inputs as shown in Figure 1-22 on page 1-24. We now want to 
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know what the output voltage vout  will be for any combination of values for the two input 
voltages vin–  and vin+ . 

Because the circuit is linear, the solution for vout  will again be a sum of terms like equation 
1.8. We will use the principle of linear superposition to obtain this solution by setting vin+  
and vin–  to 0 in turn. As we’ve said before, setting a voltage source to 0 is nothing more than 
replacing it with a short circuit (a wire) connecting its two terminals. The input voltage 
sources in Figure 1-22 each have one terminal connected to ground (that’s why we show only 
a single terminal for each source), so setting one of them to 0 is the same as connecting that 
circuit input to ground. 

Thus if 0inv + = , the circuit becomes identical to the inverting amplifier in Figure 1-17, and 
the inverting amplifier gain formula in equation 1.6 will describe how vout  depends on vin– . 
Conversely, 0inv − =  results in a noninverting amplifier like Figure 1-16 with gain given by 
equation 1.5. Linear superposition then implies that outv  will vary as the sum of these two 
expressions, so that for arbitrary vin+  and vin–   we will get: 

 ( )i f

f

R R
R

i f f f
out in in in in

i i i

R R R R
v v v v v

R R R
+

+ − + −
+     = − = −           

   

This result is almost proportional to the difference in the two input voltages ( ),in inv v+ −−  but 
not quite. If we were to first scale vin+  by ( )/f fiR R R+ , then the output would indeed be 
proportional to the input voltage difference, and we would have designed a differential 
amplifier. But this correction factor is just what we would get if we were to add a voltage 
divider with resistors iR  and  fR  between vin+  and the op-amp’s +Input, as shown in Figure 
1-23. 

   
Figure 1-22: A combination of a noninverting and an inverting amplifier. If input signal vin+ = 0, then 
the circuit is an inverting amplifier for signal vin– (top right diagram), and vout = –(Rf /Ri) vin– . If, 
instead, vin– = 0, then the circuit is a noninverting amplifier for signal vin+ (bottom right diagram), 
and vout = (1 + Rf /Ri) vin+ . By the principle of linear superposition, the response at vout must be the 
sum of these two expressions:  vout  =  (1 + Rf /Ri) vin+  –  (Rf /Ri) vin– . 

outv

fRiRinv −

inv +

0inv + =

0inv − =
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Because the ideal op-amp’s +Input draws no current, the voltage at that input will be given 
using the basic voltage divider equation presented in Figure 1-7 on on page 1-8, reducing 
vin+  by the correct factor to give a purely differential gain, equation 1.11. 

 Ideal, differential amplifier 

1.11 ( )f
out in in

i

R
v v v

R + −= −  

Note one important point about the differential amplifier, however: the output will be given 
by (1.11) only if the resistor values are exactly matched so that the voltage divider on the 

inv +  input exactly compensates for the extra gain of the noninverting amplifier action. The 
resistors you will use have values whose tolerance is 5% (or maybe 1%), so their actual 
values may differ from the marked values by that percentage. In practice this implies that 
even though you may have in inv v+ −= , you would have nonzero vout . Thus inaccurate 
matching of the resistor values results in a nonzero common mode gain so that vout  will 
include a residual term proportional to the average value of the two input voltages. The ratio 
of the amplifier’s differential gain, ( )diff out in inG v v v+ −= − , to its common mode gain, 

2 ( )out in incmG v v v+ −= + , is known as its Common Mode Rejection Ratio and is an 
important specification when choosing or designing a differential amplifier. 

You will need to use the powerful principle of linear superposition throughout this 
course to solve circuit problems and properly design your circuits. 

 
Figure 1-23: The Differential Amplifier. The added voltage divider on the vin+ input will divide it by 
just the right amount so that the output is proportional only to the difference between the two 
input signals, equation 1.11. 

fRiR

fRiR

outv

inv −

inv +
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Input resistance 
We’ve already mentioned the terms input impedance and output impedance in our discussion 
of the “black box” description of a network (or sub-circuit). Now is the time to start to 
understand what they mean and why they are important, at least in the context of the circuits 
we’ve analyzed so far. We can’t actually define impedance yet (that will have to wait for 
Experiment 2), but we can talk about input resistance and output resistance, which are 
closely-related concepts (in order to restrict ourselves to resistances, we will have to assume 
that our power sources output constant (DC) voltages and currents, and that we wait long 
enough for any transient, time-varying behavior of the circuit to die away before we take any 
measurements). In this section we discuss input resistance; output resistance is a slightly 
more advanced topic and is addressed in the section starting on page 1-42. 

When we connect a power source to an input of a network or circuit, the source will, in 
general, apply some voltage across the two input terminals, and some current will flow.  

The input resistance of an input port of a network or device is the ratio of the applied 
voltage and the resulting current flowing into that input. 

 Input Resistance 

1.12 in

in
in

vR
i

≡  

THE IMPORTANCE OF INPUT RESISTANCE 

Input resistance determines how much power must be supplied by an input source. 
For example, some voltage sources are very weak and cannot provide a significant 
amount of current. In this case, the input resistance of the circuit must be made high 
enough to not load down the source. 

In other cases (usually involving high frequencies or short signal pulses), the circuit’s 
input resistance must be chosen to match the characteristic impedance of the cable 
connecting the source. Otherwise, the signal will be reflected by the circuit input, 
wasting signal power and greatly distorting the signal shape. Typically, the input 
resistance in these cases should be 50Ω. 

If our circuit is linear and if there is only one input power source, then Rin  
as defined in 1.12 will not vary with the magnitudes of vin  and iin . For 
example, if our network consists of a single resistor R, as shown at right, 
then (trivially) connecting an input voltage source vin  to its terminals will 
result in current in ini v R= , and, as expected, inR R= .  

R

Networkinv
ini →
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For a less trivial example, consider the input resistance of the 3-resistor network in Figure 
1-18 on page 1-18. With the input voltage to that network sinv v=   and resulting current 

sini i=  (refer to the figure for the definitions of sv  and si ), then the solution to that example, 
equations 1.7 on page 1-19, shows that:  

 1 2 3
1

1 2 31
s

in
s

R R RvR R
i R R R R

= = = +
− +



  

which we could have anticipated by noting that the network simply consists of resistor R1 in 
series with the parallel combination of resistors R2 and R3. 

In general, the input resistance Rin of a network port will depend 
upon what is connected to the network’s other ports, including its 
output ports. For example, let’s examine the simple voltage divider 
considered as a two-port network (at right). Clearly, its input 
resistance Rin will depend on the value of the load Rload connected 
to the divider’s output port, since the load resistance is in parallel with one of the voltage 
divider’s two resistors. In fact, this network (including the output load resistor Rload) is the 
same as that in Figure 1-18, with Rload assuming the role of that example’s R3. This particular 
situation (input resistance changing if the load changes) can be avoided by adding a voltage 
follower as in the third example in Figure 1-24 below: the op-amp isolates the input from the 
output load. 

 
Figure 1-24: Amplifier circuit examples illustrating the Input Resistance concept. Inverting amplifier: 
since the –Input node of the op-amp is a virtual ground, the input resistance of the amplifier is just 
the value of R1, the input resistor. Voltage follower: since the op-amp inputs draw no current, the 
input resistance is infinite. Potentiometer as a variable voltage divider connected to a voltage 
follower: again, no current flows into the +Input, so the input resistance is given by the total 
potentiometer resistance R1. In each of these cases, the amplifier isolates the output load from its 
input, so the input impedance is unaffected by the current required by the load connected to its 
output. 

inR R= R1 inR = ∞ inR R= R1

 

loadRinR
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PRELAB EXERCISES 
1. The lab power supplies you will use for your op-amp circuits supply 12V+  and 12V−  at 

up to 250mA  each. How many total watts of power is this?  

If the resistors you use can absorb no more than 1/4W without damage, then what is the 
minimum resistor value which can be connected between the 12V+ supply and ground 
without damage? between the 12V+ supply and the 12V−  supply? 

2. If you take a resistor R and add another resistor with resistance 0.1 R×  in series with it, 
the total resistance of the pair is obviously 1.1 R× , a 10% increase. If instead you wish a 
combination which has a total effective resistance of only 0.9 R× , you could do it by 
placing a second resistor in parallel with the original R. In this case, what should be the 
value of this second resistor? 

3. For the inverting amplifier circuit shown in Figure 1-17 on page 1-15, the input source vin  
must supply the current iin  flowing through input resistor Ri . As described in the text this 
same current must continue on through the feedback resistor Rf  (as current if ). Where 
does the current if  go from there? Assume no load is attached at the op-amp output. 

4. Which of the following amplifier circuits will work correctly (do something useful)? 
Which won’t, and why not? For those that do work correctly, what is the amplifier gain 
(use a ‘−’ sign for an inverting gain)? the input resistance? Look at them carefully! 

 

(a) (b) (c)

(d)

(e) (f)
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5. Refer to Figure 1-20 on page 1-22 and derive the generalized voltage divider formula, 
equation 1.10 (repeated below). 

1.10 
( )
( )1 k

k k
out

v R
v

R
=
∑
∑

 

Hint: a clever way to solve this problem is to convert each of the (vk , Rk ) sources to their 
Norton equivalents (see Figure 1-37 on page 1-44); this will give (current source + parallel 
resistance) pairs: ( , )k k k ki v R R= . Remember that each source has its other (implicit) 
terminal connected to ground ( ), as does the output voltage node, vout . Note that now all 
the source resistors are in parallel, and so are the source currents! The output voltage 
becomes the voltage across the parallel resistor combination driven by the sum of the 
source currents. 

6. Consider the circuit below (Figure 1-25), which you will construct and evaluate during 
lab. What is the the circuit’s gain ( )out inv v  when the gain adjust potentiometer’s wiper is 
set to the top end of its resistance element? Set to the bottom end? Centered? 

 
Figure 1-25: How does the gain of this circuit vary as the potentiometer is adjusted? 

 

 

outv

inv

Gain
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20k
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LAB PROCEDURE 

Ask questions during the lab! Don’t just sit and stare helplessly at a circuit or piece 
of test equipment which stubbornly refuses to cooperate!  

Overview 
During lab you will experiment with various op-amp circuits and evaluate their performance. 
You will start to become familiar with the analog electronics lab trainer, the signal generator, 
the oscilloscope, and a couple of the data acquisition and control programs available on the 
lab computer workstations. For each circuit configuration you investigate, you should use the 
oscilloscope to measure the input and output peak-to-peak voltages (for oscillating signals; 
peak-to-peak: difference between maximum and minimum values) or the mean voltages (for 
DC signals). For some oscillating signals you should also try square waveforms as well as 
sine waves.  

Interesting results may be recorded by saving oscilloscope screen-capture images 
(see Figure 1-28 on page 1-32). Include circuit diagrams (schematics) and very brief 
comments regarding your findings in your lab write-up; comments may be hand-
written on printed screenshots or other computer-generated graphs. Schematics 
(with component values and input and output ports labeled) are required for all 
circuits. You may refer to figures in the notes which show schematics. 

Figure 1-26 shows a typical lab station setup. The more quickly you become familiar with the 
oscilloscope’s and signal generator’s controls and menus, the more you will enjoy your time 
in the lab and the more productive you will become. This first experiment is a good one to 

 
Figure 1-26: A typical lab station setup, with analog electronics trainer and breadboard, 
oscilloscope, signal generator, and computer with data acquisition and control software. 
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spend time exploring the instruments’ various modes and capabilities. Ask lots of questions!  

Using the analog trainer and breadboard 
The analog breadboard we use is the Texas Instruments ASLK PRO, kindly donated by the 
company for our use. The manufacturer’s web site supporting this system may be found at: 
https://university.ti.com/en/faculty/teaching-materials-and-classroom-resources/ti-based-teaching-kits-for-

analog-and-power-design/analog-system-lab-kit-pro  

The manufacturer’s student manual for the breadboard is found here: 
 http://download.mikroe.com/documents/specials/educational/aslk-pro/aslk-pro-manual-v103.pdf  

The board shows power supply connections as +10V and −10V, but the actual power 
supply voltages we use in the Caltech lab trainers are +12V and −12V.  

The board Ground connections are to the common power supply return as shown in 
Figure 1-3. They are not connected to Earth Ground within the breadboard assembly. 
A connection to earth ground is provided by the green connector on the front of the 
trainer chassis. 

For this first experiment you will assemble various amplifier circuits by using jumper wires 
to connect components on the trainer. The photos in Figure 1-27 show several views of a 
trainer configured with a ×11 noninverting amplifier circuit and connected to a signal 
generator and oscilloscope. More details about how to properly use the breadboard are 
provided in the detailed procedures section starting on page 1-34. 

   
Figure 1-27: The proper way to build circuits using the breadboard’s preinstalled component area.  

Left: overall image of a setup showing the oscilloscope with its two 10× probes and the signal 
generator using a BNC cable for its connection.  
Right: The trainer breadboard area in the lower-center is used for most amplifier designs. It has 
two op-amps with a selection of associated resistors and capacitors. In this image a ×11 
noninverting amplifier is wired up in that area. 

https://university.ti.com/en/faculty/teaching-materials-and-classroom-resources/ti-based-teaching-kits-for-analog-and-power-design/analog-system-lab-kit-pro
https://university.ti.com/en/faculty/teaching-materials-and-classroom-resources/ti-based-teaching-kits-for-analog-and-power-design/analog-system-lab-kit-pro
http://download.mikroe.com/documents/specials/educational/aslk-pro/aslk-pro-manual-v103.pdf
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Figure 1-28: Waveform display using oscilloscope configured to measure input and output signal 
amplitudes and mean voltages, and a computer screen capture of similar data. 

Considerations when making BNC cable connections 

The two conductors of the BNC cable are not equivalent. For all the instruments in 
the lab the displayed voltage is that of the center pin with reference to the outer 
shell. In other words, the BNC shell serves as the voltage reference for signals on the 
cable (it is a signal ground). 

  
Figure 1-27 (continued). 

Left: detail showing how the 5-way binding posts are used to connect the circuit to the signal 
generator and the oscilloscope probes. 22 gauge solid wire is used as a “terminal” to which a circuit 
jumper and/or a probe clip may be attached. BNC cables are plugged into a pair of binding posts 
using an adapter (Figure 1-29). 
Right: photo showing how to construct a ×11 noninverting amplifier using jumper wires. Following 
the diagram in Figure 1-31 on page 1-35, the yellow wires connect a 10k resistor as Rf (to the op-
amp output) and a 1k resistor as Ri (to ground). The red wires connect the amplifier input and 
output signals to the binding posts. Green wires connect the signal generator and oscilloscope 
grounds to the circuit ground, completing the circuit. 
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Connections to external instrumentation (primarily 
the signal generator, oscilloscope, and the computer 
data acquisition system (DAQ) are made using 
coaxial cables with BNC connectors or, in the case 
of the oscilloscope, 10× probes. The BNC-banana 
interface adapter, shown in Figure 1-29, lets you use 
a BNC cable with the breadboard assembly’s 5-way 
binding posts, as shown in Figure 1-27. A BNC cable 
contains two conductors: an inner signal wire 
separated by an insulating sleeve from a surrounding 
braided shield. The outer metal shell of the BNC 
connector is connected to the cable shield, whereas the connector center pin goes to the 
cable’s inner signal wire. The adapter’s banana plug identified with the “GND” tab (as 
shown in the photo) connects to the BNC shell, the other  banana plug (opposite the “GND” 
tab) goes to the BNC signal pin. 

The DAQ analog voltage input BNC connectors are isolated from the other connectors and 
from Earth Ground, so their two connections may be made anywhere on the breadboard to 
make a measurement. This is not the case for the oscilloscope inputs! Both oscilloscope input 
BNC shells are connected to each other and to Earth Ground. This is also the case for the 
other BNC connectors on the computer DAQ interface. 

The two oscilloscope inputs have BNC shells connected to Earth Ground. Always 
connect these conductors (and the ground clips on the 10× probes) to the analog 
breadboard Ground as shown in the photos of the example circuit in Figure 1-27. 

 

CAUTION 

Never apply a signal to a circuit that is not powered up. Otherwise the signal can 
damage the op-amps. When assembling a circuit or making changes to it, disable the 
signal generator output (using its OUTPUT button).  

You may also want to turn off the power switch on the breadboard, especially if you 
are extensively rewiring a circuit. 

The signal generator can supply up to 100mA to a circuit, which can cause some 
damage! The power supply terminals on the breadboard can source up to 250mA (at 
±12V), which can make quite a spark! 

  

 
Figure 1-29: BNC adapter showing the 
tab identifying the connection to the 
BNC shell. 

“GND”“GND”
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Detailed procedures 
Carefully examine Figure 1-30 and note that several components (a bunch of resistors and 
capacitors) are installed on the breadboard along with each op-amp, and each component 
already has one terminal connected to an op-amp input. The other terminal of each 
component has a set of pins to which you may connect jumper wires. There are also pins 
providing access to the circuit ground, as shown. Only connect a jumper wire to a component 
you wish to use; the others will then have no effect on your circuit. 

Inverting and noninverting amplifiers 
Assemble a ×11 noninverting amplifier circuit, including the connections to the signal 
generator and oscilloscope. The left-hand diagram in Figure 1-31 (on page 1-35) shows the 
jumper connections required for this circuit, and it is also shown in the photos in Figure 1-27. 

Investigate the behavior by starting with a 1kHz sine input with an amplitude of about 
100mV. Determine the circuit gain by comparing oscilloscope measurements of the peak-to-
peak input and output amplitudes (Figure 1-28). Now try different signal generator 
waveforms, amplitudes, and frequencies. Use the signal generator’s offset function to add a 
constant (DC) voltage, and determine the DC gain by comparing measurements of the input 
and output mean voltages. Does it match the gain determined from the peak-peak voltage 
measurements? What happens to the output if the input amplitude is too large? Take a screen 
shot of this. 

 

Figure 1-30: An op-amp in the trainer breadboard area with several resistors and capacitors already 
attached to the op-amp’s + and – inputs, as shown in the equivalent schematic on the right. Terminal 
pins allow you to attach jumper wires to connect the free end of a component somewhere else. Pins 
are also provided to make direct connections to the op-amp inputs, its outputs, and to ground. The 
op-amp power supply terminals are already connected, so you don’t need to connect to them. 
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Next, reconfigure the input connection to the circuit to convert it into an inverting amplifier, 
as shown in Figure 1-31. What should be the gain for this amplifier? Confirm the operation 
of the amplifier in this configuration. Now try one or two different resistor combinations to 
get various gains, both in noninverting and inverting amplifier configurations. Fill out a table 
similar to this to summarize your results: 

Rf Ri Noninverting Gain Inverting Gain 

    

    

Variable-gain amplifier 
Construct the circuit presented in Figure 1-25 on page 1-29 (Prelab exercise 6). Use the 20k 
potentiometer included with your parts kit. The potentiometer may be installed in the 
breadboard area of the circuit trainer — your TA or the laboratory instructor can show you 
how to properly connect it. How does the circuit gain vary as you adjust the wiper position? 
Does it behave as you predicted in your answers to the prelab problem? 

 
Figure 1-31: The left diagram shows the jumper connections for the first circuit you should build, a 
noninverting amplifier. The photos in Figure 1-27 show this circuit as well.  The 10k resistor is 
connected to the op-amp output, making it the feedback resistor, Rf. A 1k resistor is connected to 
ground, making it Ri, and the input signal is connected directly to the op-amp +Input. 

To convert to an inverting amplifer configuration, shown at right, simply swap the signal input and 
ground jumpers at their connections to the op-amp and Ri! 

Inverting x10

In Out

Noninverting x11

In Out
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Additional circuits 
Try cascading two amplifiers [output of one goes to the input of another, like circuit (e) in 
Prelab exercise 4]. Finally, if you have time, build and evaluate at least one of the circuits 
(your choice) from the MORE CIRCUIT IDEAS section. 

What your experiment write-up should include 
In addition to the specific requirements or questions to answer mentioned in the above 
procedures, your results should always include: 

1. A schematic of each circuit you present results for showing all component values and 
how the signal generator and oscilloscope are connected to it. 

2. What the expected performance of the circuit is predicted to be (gain, etc.). 

3. Actual circuit performance, including interesting oscilloscope screen captures. 

4. Comments about unexpected circuit behaviors and any useful “lessons learned” you 
ought to remember. 

5. Any interesting ways you’ve discovered to configure the instruments to generate useful 
circuit inputs or make measurements. 

Don’t spend a lot of time on your write-up after you leave the lab — just make it 
clear that you understand what you did. Spend your time outside lab studying the 
notes and preparing for the next experiment! 
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MORE CIRCUIT IDEAS 

Voltage to current (transconductance) amplifier 
Sometimes you would like to accurately set the current through a 
load by using a control voltage. Since a resistor is a “voltage to 
current converter” (Ohms’ law, right?), we just need to apply the 
control voltage across a resistor and direct the resulting current 
through the load. A simple transconductance amplifier, shown at 
right, performs this trick. Essentially a noninverting amplifier 
configuration, the negative feedback ensures that the input voltage 
Vin  will also appear at the –Input and thus across resistor R1. The 
current to establish this voltage drop comes from the op-amp output 
by feedback current passing through the load (shown connecting the 
output terminals). Thus the load current is given by: out inI V R= R1 ; the ratio of the output 
current to the input voltage (the amplifier gain) is 1 RR1 . The gain has units of conductance 
(resistance−1), which is called a transconductance because it is the ratio of a current and a 
voltage measured at two different places (trans: “transfer”). Note that no current is required 
from the source of the control voltage Vin ; all load current comes from the op-amp output.  

A useful application of this circuit is to illuminate a light emitting diode (LED) with a current 
proportional to the input voltage (see Figure 1-32 below). Since the output intensity of a LED 
is very nearly proportional to its current, we have a voltage to light intensity converter. LEDs 
require a minimum of about 1.8V to produce any appreciable light output, so using this 
amplifier can really simplify things (we’ll learn more about diodes, including LEDs, in a later 
experiment). If R1 is a 1k resistor, then the LEDs will get 1mA of current for every 1V input, 
a useful conversion factor for many applications. 

   
Figure 1-32: A LED driver using a transconductance amplifier. LED D1 is illuminated for Vin < 0, D2 
whenever Vin > 0. Resistor R1 sets the conversion from input voltage to LED intensity. 

One major drawback of this simple circuit is that the load must be an isolated, 2-terminal 
device (neither output terminal is a circuit ground, so the load must be able to float). We’ll 

 

 

Determining diode polarity: the long 
lead is the anode (+); the short lead 
(nearest the flat section of the LED 
circumference) is the cathode (−). 
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investigate transconductance amplifier circuits in a later experiment which relax this 
requirement. 

Current to voltage (transimpedance) amplifier 
Sometimes the input signal to be amplified and measured 
is a current rather than a voltage. One popular way to 
accomplish this would be to let the current flow through a 
small resistor of known value and then to amplify the 
voltage drop across it. A simple transimpedance amplifier, 
shown at right, is often a very useful circuit for 
accomplishing this result: simply an inverting amplifier 
with no input resistor! Current entering the transimpedance amplifier’s input terminal (which 
is, of course, a virtual ground) flows on through the feedback resistor R1. The voltage drop 
across this resistor appears at the op-amp output, so the gain is: out inV I R= − R1 . The gain 
has units of impedance (resistance), which is called a transimpedance (or transresistance). 
Because the input is a virtual ground, the voltage the current source must be able to supply at 
the amplifier input in order to maintain its current is tiny (this is called the required voltage 
compliance of the amplifier). 

Figure 1-33 is an example of the usefulness of this amplifier. A 
reverse-biased photodiode is connected between a power 
supply and the amplifier input as shown. Connected as shown, 
only a fraction of a microamp of current will flow through the 
diode when it is not illuminated (the diode’s dark current). 
When illuminated the diode’s current will be much larger — 
10’s to 100’s of microamps, and since its current is very nearly 
proportional to the level of illumination, so will be the 
amplifier’s output voltage  (the reverse of the circuit in the 
previous section). Select the value of resistor R1 so that the 
output voltage range is appropriate for the light intensities you 
expect to experience, and/or add another amplifier stage to the 
circuit’s output. 

 

 
Figure 1-33: A photodiode amplifier. 
The output is proportional to the 
light intensity; R1 sets the gain. 
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Audio fader control 
Consider the schematic at right, which 
demonstrates another interesting way to use a 
potentiometer. When the fade adjust wiper is in 
its center position, 2inv  is presented to each 
opamp’s +Input, which is configured as a ×2 
noninverting amplifier. Thus both the left and 
right outputs equal vin . As the wiper position is 
varied the input signal is distributed unequally 
to the two amplifiers, so that it may be 
smoothly panned from one output channel to 
the other. Note that with the resistor values 
shown, the total output power (which is 
proportional to the sum of the squares of the 
two output signals) stays approximately 
constant. If two different signals are applied to the pair of 10k resistors (rather than the single 
input as shown in the figure) then the circuit becomes a stereo balance control. 

Instrumentation amplifier 
Consider the circuit shown at right. How do we analyze its 
response to the two inputs? The answer is, naturally, to use 
linear superposition, but we’re going to apply it in a clever 
way. Instead of setting inV +  or  inV −  individually to zero, 
consider instead two combinations of them: their difference, 

in indiffV V V+ −= −  , and their average, ( ) 2cm in inV V V+ −= + . 
Then if we set 0diffV = , we would have cmin inV V V+ −= = ; if 
instead 0cmV = , then in inV V+ −= − . Now use linear 
superposition of these two new independent variables, diffV  
and cmV , to determine outV +  and  outV − , assuming that the 
two resistors labeled R are perfectly matched, and the 
resistor 0gR ≠ . 

Consider the case  0diffV =  first, so in inV V+ −= . Assuming that the negative feedback does 
what it’s supposed to, then the two op-amps’ –Inputs are also equal, which means that the 
voltage drop across gR  vanishes, and thus so does the current through gR . Since no current 
flows through it, resistor gR  could be removed from the circuit without affecting the circuit’s 
operation! We’re left with two independent voltage followers (the value of R doesn’t matter), 
and out out cmV V V+ −= = . The circuit has a gain of 1 for a common mode input, :cmV  1cmG = . 

Next set 0cmV = , so in inV V+ −= −  and ditto for the two op-amps’ –Inputs. The resistor gR  
has its two terminals with equal and opposite voltages, so the center of this resistor is at 

 

 

10k

Fade Adjust
inv

( )outv left

20k

1k 1k

1k 1k

10k ( )outv right
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ground potential. We can split the resistor into two resistors in series, each with value 2gR , 
and we know that their junction is at ground potential. This symmetry again lets us separate 
the circuit into two twins, but this time each half is a noninverting amplifier with fR R=  
and 2giR R= , so each amplifier has a gain of 1 2 gR R+ . So: 

 
( )( ) ( )1 2 1 2

1 2

g gout out in in diff

gdiff

V V R R V V R R V

G R R

+ − + −− = + − = +

= +
  

We have a circuit with a high gain for a differential input signal, but a gain of 1 for a 
common mode signal. The differential gain, diffG , can be adjusted by changing the value of 
only one resistor, gR . Because each amplifier has a noninverting configuration, its input 
resistance is very large. 

This clever circuit is meant to be combined with a traditional differential amplifier (Figure 
1-23) to create the 3 op-amp instrumentation amplifier: 

 
Figure 1-34: The Instrumentation Amplifier. This enhancement of the basic differential amplifier has 
a very high input impedance for both the + and – inputs, has a differential gain which can be 
changed by varying the value of one resistor, and has very high common mode rejection. It is so 
useful, especially for scientific applications, that many versions are available in the form of single 
integrated circuit devices. 
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ADDITIONAL INFORMATION ABOUT THE CIRCUITS 

This section expands on some of the material presented earlier. It is better skipped during a 
first reading, but you may want to go over it after you thoroughly understand the concepts 
discussed in the first several sections. 

Other sorts of circuit grounds 
Often in commercial electronic equipment (but not always) the circuitry’s 0-Volt reference 
point will be physically connected to the ground beneath the building using the “ground 
connection” in the device’s 3-pin AC power-line cable; this reference point thus called earth 
ground  and is said to be at earth ground potential. 

If it is important to distinguish between a circuit’s 0-Volt reference potential and earth 
ground (because the two may not be actually physically connected), the circuit reference 
point is then called local ground (or just ground), and earth ground would be, in general, a 
different reference point with a different potential. Other common reference points include 
chassis ground (the potential of the equipment’s metal enclosure), analog ground and digital 
ground (if these different sections of a circuit do not share a common reference point), signal 
ground (the bottom terminal of an input signal source’s circuit element), etc. The symbols 
used in this text for various grounds are shown in Figure 1-35. 

 
Figure 1-35: Ground symbols we might use. Usually, only  will represent the 0-Volt reference point. 

Incremental Input Resistance 
If there are other sources providing inputs to a network, then at an input port in question it 
may no longer be the case that  inv  and ini  are proportional; it may be, for example, that  

0ini ≠  even though 0inv = . Consequently, we probably don’t want to use equation 1.12 to 
calculate the port’s input resistance. Consider, for example, the differential amplifier in 
Figure 1-23 (on page 1-25): the op-amp’s –Input node will not be a virtual ground because 
the op-amp’s +Input voltage depends on the source voltage inv +  (and the op-amp –Input will 
be at the same voltage as the +Input); therefore even if 0inv − = , the current ini −  at that port 
will not vanish because of the nonzero voltage drop across the input resistor. To avoid this 
sort of problem with our definition of the input resistance, we instead define the circuit’s 
incremental (or dynamic) input resistance, inr , as a derivative (equation 1.13). 

Ground
(0 Volts)

Chassis
ground

Earth
ground
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 Incremental Input Resistance 

1.13 in

in
in

vr
i

∂
≡

∂
 

We use a partial derivative in (1.13), meaning that all other independent input sources are 
held constant. For linear circuits, the incremental input resistance rin  will not vary with the 
magnitudes of vin  and iin , even in the presence of other input sources. The incremental input 
resistance rin  also will not be affected by the amplitudes of the other input sources. The 
concept of an incremental resistance, however, is useful even for nonlinear circuits, although 
in this case you should expect that its value will vary with voltage and/or current. 

CALCULATING A PORT’S INCREMENTAL INPUT RESISTANCE 
In a linear circuit the incremental input resistance inr  of any individual input port is 
not affected by the magnitudes of any of the other independent input sources. Thus 
you can calculate its value by first setting all other input sources to 0 (using the rules 
on page 1-20) and then determining the ratio in inv i  for the single input port in 
question. Make sure all other ports of the network (sub-circuit) are first terminated 
(connected to whatever circuits to which they will interface).  

 

Output resistance 
The output resistance of a power source or a network’s output 
port characterizes how its output varies with changing load 
resistance. For example, consider a power source which is 
made up of an ideal voltage source, vs , in series with a nonzero 
source resistance, Rs , driving some load resistor as shown at 
right. The current through the load, iout , also must flow 
through the source resistance, and the voltage drop across this 
resistance is then Rsiout . Thus, vout , the output voltage, is less 
than vs , the voltage it would be if the load resistance were infinite ( 0outi = ). 

We define the output resistance of an output port in terms of the drop in the output voltage 
with increasing output current: 

 Output Resistance 

1.14 out

out
out

vr
i

∂
≡

∂
−  

We use a partial derivative in this expression to reflect the fact that the driving source vs  must 
be held constant as the output current is varied to determine rout . An ideal voltage source is 
one whose output voltage is unaffected by the load current it must supply, so its output 

 

sRsv
outi

outv

out s s outv v R i= −
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resistance is 0.  An ideal current source, on the other hand, supplies a constant current 
regardless of the voltage required to push that current into its load, so 0outi∆ ≡ . Thus for a 
current source outr = ∞ . 

Our old friend, the voltage divider, however, is not such an ideal character. Let’s calculate 
rout  for the output of a voltage divider driven by an ideal voltage source at its input. We will 
solve this problem by using linear superposition, our powerful circuit analysis ally. 

VOLTAGE DIVIDER OUTPUT RESISTANCE 

The problem is to determine how the output voltage changes as we change the output current 
required by a load attached to a voltage divider. To do this using linear superposition, we 
perform a sort of “thought experiment”: we replace the output load with a current sink, an 
ideal current source we can control to independently set the output current to mimic any load.  

 
Figure 1-36: Determining the output resistance of a voltage divider driven by an ideal voltage 
source. Think of the load as a current sink (right schematic) and then set the source to 0; this puts 
the two resistors in parallel, and that parallel combination gives the output resistance, rout. 

With this change (Figure 1-36), we know that vout  will be a function of vs  and iout  with the 
form given by equation 1.8: out s outv av bi= +  for some constants a and b determined by the 
resistor values R1 and R2. This means that out out outr v i b= −∂ ∂ = − , so we just need to 
determine the value of b. But we’ve already solved this problem: see the simple example of 
superposition presented starting on page 1-20, where we found that the coefficient b of iout  is 
given by the parallel combination of resistors R1 and R2: 

 1 2 1 2( )outr R R R R= +   

Note that this calculation is operationally equivalent to replacing the embedded voltage 
source with a short circuit (setting it to 0) and then treating the output port as though it were 
an input and calculating its input resistance. This procedure is generally the correct way to 
calculate a linear circuit’s output resistance (or, more generally, its output impedance). That 
this method works is yet another example of the principle of linear superposition. As with the 
determination of the input resistance of a network or sub-circuit, the answer will generally 
depend on how all its other ports are terminated (what sorts of circuits are attached to them).  

sv outi
outv1R

2R
sv outi

outv1R

2RBecomes
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CALCULATING A PORT’S OUTPUT RESISTANCE 
To determine the output resistance of a network port, connect all other ports to 
whatever circuits they will interface to. Then set all independent driving voltage and 
current sources to 0, replacing them as described on page 1-20. Finally, treat the 
port in question as an input, and calculate its input resistance — this result will equal 

outr  (equation 1.14). 

Thevenin and Norton models of power sources or outputs 
We can model most real power sources or circuit output ports as ideal voltage or current 
sources combined with a finite resistance (or impedance, as we’ll use in Experiment 2) so 
that their output resistance matches that of the real source, as shown in Figure 1-37. These 
are called Thevenin and Norton equivalent circuits (or models) of a real source. For example, 
many commercial signal generators (including the one you will use in lab) have a 50 Ohm 
output resistance and are best represented using a Thevenin model (voltage source in series 
with 50sR = Ω ). 

 
Figure 1-37: Thevenin and Norton models of power sources with finite output resistance. Which 
model you choose depends on your application, but if the output resistance Rs is relatively small, 
then the Thevenin (voltage source) model is probably the correct choice. Use the Norton (current 
source) model if Rs is large. The two models are completely equivalent (have the same output 
regardless of load) if the source resistance Rs is the same for both and the two source amplitudes 
are related by vs = Rs is (see also Prelab Exercise 5 on page 1-28). The laboratory signal generator 
has Rs = 50 Ohms. 

A nontrivial example of circuit analysis using Kirchhoff’s laws 
Consider the bridge circuit of five resistors shown here, driven by a 
voltage source. We want to determine two things: the total 
equivalent resistance of the circuit, and the current through the 
center, horizontal resistor, assuming that the values of the various 
resistors are all different (the center resistor is called the “bridge 
resistor” because it “bridges” the outputs of two voltage dividers). 
You will quickly realize that this is a nontrivial problem; we can’t use our series or parallel 
resistor formulas to simplify our analysis, so we will have to employ a more brute-force 
method. 

sv sisR sR

Thevenin Model Norton Model
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We start by labeling the currents and voltages at each node (there are 4 nodes in all). Figure 
1-38 gives a possible labeling which we’ll use for this example. Notice that we have already 
used the rule concerning the total current flow into a lumped element’s terminals: since each 
element has two terminals, we know that the various currents may be represented by a single 
current flowing through each of the elements. We have also chosen the bottom node to be 
ground, so the voltage there is 0, by definition (since there are no hidden or implied power 
supplies or other elements connected to ground for this example, we know that there are no 
other connections carrying current into or away from our ground node, and our list of 
currents is complete). 

The example problem has one independent (driving) variable, inv , and five fixed parameters, 
the resistor values R1 through R5. There are three unknown voltages, av  through cv , and six 
unknown currents, ini  and 1i  through 5i . So we need 9 independent equations to solve for 
the unknowns. Start with the loop voltage rule and use Ohm’s law to relate the node voltages 
to the resistor currents: 

(1) Clearly, by going up the left side through the voltage source: a in indv v v v= + =   
(2) Following the current through R1, the voltage will drop across it: 1 1abv v R i= −  
(3) Similarly for R4: 4 4c av v R i= −  
(4) The voltage drop across R3: 3 3c bv v R i= −  
(5) The voltage drop across R2 takes us back to ground: 2 20d bv v R i= = −  
(6) Ditto for R5: 5 50 cdv v R i= = −  

The node current rule gives: 

(7) at node a: 1 4 ini i i+ =  
(8) at node b: 2 3 1i i i+ =  
(9) at node c: 53 4i i i+ =  
(10) at node d (ground): 52 ini i i+ =  

   
Figure 1-38: A nontrivial example to exercise the circuit voltage and current rules: a resistor 
“bridge” with voltages and currents identified and labeled for analysis. The bottom node is defined 
to be ground, so the voltage there is 0 by definition. The source is assumed to supply voltage vin , 
and the circuit draws current i in from it. 
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Now we have 10 equations for our 9 unknowns, but, of course, they are not all independent. 
As you might expect, the problem is with the node current equations; in fact the combination 
of equations (9) (10) (8)+ −  yields equation (7), so we can discard one of these four 
equations and the remaining nine will form a complete, independent set. This will often be 
the case for the node current equations of a circuit. 

We can solve this linear system of equations in any of the standard ways; this is the sort of 
problem computers were originally designed to solve. The solution is messy, and the answers 
to the original problem turn out to be: 

 The total equivalent resistance presented to the source: 

 ( ) ( )( )
( )( ) ( )

1 2 4 1 2 5 1 4 5 2 4 5 3 1 2 4 5

1 4 2 5 3 1 2 4 5

in

in

R R R R R R R R R R R R R R R R R

R R R R R R R R R
vR
i

+ + + + + +

+ + + + + +
≡ =   

 The current through the bridge resistor, R3: 

1.15 
( ) ( )( )

2 4 1 5

1 2 4 1 2 5 1 4 5 2 4 5 3 1 2 4 5

3

in

R R R R

R R R R R R R R R R R R R R R R R

i
v

−

+ + + + + +
=   

The bridge circuit is said to be balanced when the current through the bridge 
resistor, 3R , vanishes. We see that the requirement for balance is 2 4 1 5R R R R= .  
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